open access

Vol 49, No 5 (2017)
Original and clinical articles
Published online: 2017-11-22
Submitted: 2017-09-13
Accepted: 2017-11-11
Get Citation

Re-operative abdominal predictive score: a prognostic model combining Acute Re-intervention Predictive Index and intra-abdominal pressure

Caridad de Dios Soler-Morejón, Tomás Ariel Lombardo-Vaillant, Teddy Osmín Tamargo-Barbeito, Robert Wise, Manu L.N.G. Malbrain
DOI: 10.5603/AIT.a2017.0069
·
Pubmed: 29165775
·
Anaesthesiol Intensive Ther 2017;49(5):358-365.

open access

Vol 49, No 5 (2017)
Original and clinical articles
Published online: 2017-11-22
Submitted: 2017-09-13
Accepted: 2017-11-11

Abstract

Background: The decision to re-operate after abdominal surgery is still difficult, especially in the setting of intraabdominal sepsis. Mathematical models provide a good aid to both diagnosis and decision-making. Methods: A prospective observational study was conducted with 300 patients consecutively admitted to the intensive care unit of an academic institution affiliated to Calixto García Medical Faculty following abdominal surgery from January 2008 to January 2010. The patients were randomly separated (2:1) into estimation and validation groups. Logistic regression analysis was used in the estimation group to develop three models for decision-making related to re-operation including related factors such as age, ARPI, IAP, type of surgery (elective or emergency), and the duration of surgery. The three models developed were validated on the other group. Results: The acute re-operation predictive index-intra-abdominal pressure (ARPI-IAP) model was the best of the three models, with an excellent calibration, using the Hossmer-Lemeshow goodness-of-fit statistical test (C = 9.976, P = 0.267), as well as discrimination (AUC = 0.989; 95% CI: 0.976–1.000). Conclusion: The combination of IAP with ARPI in a mathematical model can add accuracy to the prediction of need for re-operation related to intra-abdominal infectious complications in patients following abdominal surgery. This may be useful in all medical settings, but especially those with limited resources.

Abstract

Background: The decision to re-operate after abdominal surgery is still difficult, especially in the setting of intraabdominal sepsis. Mathematical models provide a good aid to both diagnosis and decision-making. Methods: A prospective observational study was conducted with 300 patients consecutively admitted to the intensive care unit of an academic institution affiliated to Calixto García Medical Faculty following abdominal surgery from January 2008 to January 2010. The patients were randomly separated (2:1) into estimation and validation groups. Logistic regression analysis was used in the estimation group to develop three models for decision-making related to re-operation including related factors such as age, ARPI, IAP, type of surgery (elective or emergency), and the duration of surgery. The three models developed were validated on the other group. Results: The acute re-operation predictive index-intra-abdominal pressure (ARPI-IAP) model was the best of the three models, with an excellent calibration, using the Hossmer-Lemeshow goodness-of-fit statistical test (C = 9.976, P = 0.267), as well as discrimination (AUC = 0.989; 95% CI: 0.976–1.000). Conclusion: The combination of IAP with ARPI in a mathematical model can add accuracy to the prediction of need for re-operation related to intra-abdominal infectious complications in patients following abdominal surgery. This may be useful in all medical settings, but especially those with limited resources.
Get Citation

Keywords

intra-abdominal pressure, acute re-operation predictive index, prognostic model, abdominal re-operation

About this article
Title

Re-operative abdominal predictive score: a prognostic model combining Acute Re-intervention Predictive Index and intra-abdominal pressure

Journal

Anaesthesiology Intensive Therapy

Issue

Vol 49, No 5 (2017)

Pages

358-365

Published online

2017-11-22

DOI

10.5603/AIT.a2017.0069

Pubmed

29165775

Bibliographic record

Anaesthesiol Intensive Ther 2017;49(5):358-365.

Keywords

intra-abdominal pressure
acute re-operation predictive index
prognostic model
abdominal re-operation

Authors

Caridad de Dios Soler-Morejón
Tomás Ariel Lombardo-Vaillant
Teddy Osmín Tamargo-Barbeito
Robert Wise
Manu L.N.G. Malbrain

References (42)
  1. Pusajó J. Postoperative Intra-abdominal Sepsis Requiring Reoperation. Archives of Surgery. 1993; 128(2): 218.
  2. Lombardo Vaillant T A, Soler Morejón C, Lombardo Vaillant J, Casamayor Laime Z. Aplicación del índice predictivo de reintervención abdominal en el diagnóstico de complicaciones infecciosas intraabdominales. Rev Cub Med Mil. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572009000100002&lng=es&nrm=iso (1.01.2010).
  3. Sartelli M, Catena F, Abu-Zidan FM, et al. Management of intra-abdominal infections: recommendations by the WSES 2016 consensus conference. World J Emerg Surg. 2017; 12: 22.
  4. van Ruler O, Kiewiet JJS, Boer KR, Lamme B, Gouma DJ, Boermeester MA et al. Failure of available scoring systems to predict ongoing infection in patients with abdominal sepsis after their initial emergency laparotomy. BMC Surgery. http://www.biomedcentral.com/1471-2482/11/38 (19.01.207).
  5. Cook NR. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem. 2008; 54(1): 17–23.
  6. Khan S, Verma AK, Ahmad SM, et al. Analyzing intra-abdominal pressures and outcomes in patients undergoing emergency laparotomy. J Emerg Trauma Shock. 2010; 3(4): 318–325.
  7. Cheatham M, Safcsak K. Intra-abdominal pressure: A revised method for measurement. J Am Coll Surg. 1998; 186(5): 594–595.
  8. Kirkpatrick AW, Roberts DJ, De Waele J, et al. Pediatric Guidelines Sub-Committee for the World Society of the Abdominal Compartment Syndrome. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013; 39(7): 1190–1206.
  9. Knaus WA, Zimmerman JE, Wagner DP, et al. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981; 9(8): 591–597.
  10. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988; 240(4857): 1285–1293.
  11. World Medical Association Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subject. 59th WMA General Assembly, Seoul, October 2008.
  12. Shinkawa H, Yasuhara H, Naka S, et al. Factors affecting the early mortality of patients with nontraumatic colorectal perforation. Surg Today. 2003; 33(1): 13–17.
  13. Pisanu A, Cois A, Uccheddu A. Surgical treatment of perforated diverticular disease: evaluation of factors predicting prognosis in the elderly. Int Surg. 2004; 89(1): 35–38.
  14. Mäkelä JT, Kiviniemi H, Laitinen S. Prognostic factors of perforated sigmoid diverticulitis in the elderly. Dig Surg. 2005; 22(1-2): 100–106.
  15. Komatsu S, Shimomatsuya T, Nakajima M, et al. Prognostic factors and scoring system for survival in colonic perforation. Hepatogastroenterology. 2005; 52(63): 761–764.
  16. Yeh CY, Changchien CR, Wang JY, et al. Pelvic drainage and other risk factors for leakage after elective anterior resection in rectal cancer patients: a prospective study of 978 patients. Ann Surg. 2005; 241(1): 9–13.
  17. Rakić M, Popović D, Rakić M, et al. Comparison of on-demand vs planned relaparotomy for treatment of severe intra-abdominal infections. Croat Med J. 2005; 46(6): 957–963.
  18. Filgueiras Ramos B, Bembibre Taboada R, Corona Martínez LA, Soler Morejón C. Monitoreo de la presión intraabdominal (PIA) en el paciente quirúrgico grave. Rev Cubana Cir [revista en la Internet]. 2001 Mar [citado 2011 Mar 08] 40(1): 18-23. . http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S003474932001000100003&lng=es.
  19. Panhofer P, Izay B, Riedl M, et al. Age, microbiology and prognostic scores help to differentiate between secondary and tertiary peritonitis. Langenbecks Arch Surg. 2009; 394(2): 265–271.
  20. Reyes de la Paz A, Lombardo Vaillant TA, Rubio Olivares DY. Valor predictivo de la presión intra-abdominal en el diagnóstico de complicaciones posoperatorias abdominales. Rev Cubana Med Mil 2007; 36(4). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S013865572007000400003&lng=es&nrm=iso (20.04.2017).
  21. Koperna T, Schulz F. Relaparotomy in peritonitis: prognosis and treatment of patients with persisting intraabdominal infection. World J Surg. 2000; 24(1): 32–37.
  22. Pera M, Pascual M. Estándares de calidad de la cirugía del cáncer de recto. Gastroenterología y Hepatología. 2005; 28(7): 417–425.
  23. Pera M. Dehiscencia de anastomosis y recurrencia del cáncer colorrectal: una asociación que refuerza el valor pronóstico del cirujano en el resultado oncológico. Cirugía Española. 2011; 89(2): 69–71.
  24. Wacha H, Linder MM, Feldman U. Mannheim Peritonitis Index: Prediction of risk of death from peritonitis. Construction of a statistical and validation of an empirically based index. Theoret Surg. 1987; 1: 169–177.
  25. Biondo S, Ramos E, Fraccalvieri D, et al. Comparative study of left colonic Peritonitis Severity Score and Mannheim Peritonitis Index. Br J Surg. 2006; 93(5): 616–622.
  26. Aydin C, Altaca G, Berber I, et al. Prognostic parameters for the prediction of acute gangrenous cholecystitis. J Hepatobiliary Pancreat Surg. 2006; 13(2): 155–159.
  27. Asai K, Hiki N, Mimura Y, et al. Gender differences in cytokine secretion by human peripheral blood mononuclear cells: role of estrogen in modulating LPS-induced cytokine secretion in an ex vivo septic model. Shock. 2001; 16(5): 340–343.
  28. Schröder J, Kahlke V, Staubach KH, et al. Gender differences in human sepsis. Arch Surg. 1998; 133(11): 1200–1205.
  29. Lee WS, Yun SH, Roh YN, et al. Risk factors and clinical outcome for anastomotic leakage after total mesorectal excision for rectal cancer. World J Surg. 2008; 32(6): 1124–1129.
  30. Okubo R, Yajima K, Sakai Y, et al. Short-and long-term outcomes of surgery for diffuse peritonitis in patients 80 years of age and older. Surg Today. 2008; 38(5): 413–419.
  31. van Ruler O, Mahler CW, Boer KR, et al. Dutch Peritonitis Study Group. Comparison of on-demand vs planned relaparotomy strategy in patients with severe peritonitis: a randomized trial. JAMA. 2007; 298(8): 865–872.
  32. Montesinos-López O, Hernández-Suárez C. Modelos matemáticos para enfermedades infecciosas. Salud Pública de México. 2007; 49(3): 218–226.
  33. Donabedian A, Donabedian A. Evaluating the quality of medical care. The Milbank Quarterly. 2005; 83(4): 691–729.
  34. Kim SYi, Hong SG, Roh HR, et al. Learning curve for a laparoscopic appendectomy by a surgical trainee. J Korean Soc Coloproctol. 2010; 26(5): 324–328.
  35. Haji A, Khan A, Haq A, et al. Elective laparoscopic cholecystectomy for surgical trainees: predictive factors of operative time. Surgeon. 2009; 7(4): 207–210.
  36. Khalil J, Muqim R, Rafique M, et al. Laparoscopic versus open appendectomy: a comparison of primary outcome measures. Saudi J Gastroenterol. 2011; 17(4): 236–240.
  37. Khan MN, Fayyad T, Cecil TD, et al. Laparoscopic versus open appendectomy: the risk of postoperative infectious complications. JSLS. 2007; 11(3): 363–367.
  38. Desborough JP. The stress response to trauma and surgery. Br J Anaesth. 2000; 85(1): 109–117.
  39. Hotchkiss RS, Darl IE. The pathophysiology and treatment of sepsis. N Engl Med. 2003; 348: 138–150.
  40. Gil-Bona J, Sabaté A, Bovadilla JM, et al. Valor de los índices de Charlson y la escala de riesgo quirúrgico en el análisis de la mortalidad operatoria. Cirugía Española. 2010; 88(3): 174–179.
  41. Weinstein S, Obuchowski NA, Lieber ML. Clinical evaluation of diagnostic tests. AJR Am J Roentgenol. 2005; 184(1): 14–19.
  42. Basu A, Pai DR. Early elevation of intra-abdominal pressure after laparotomy for secondary peritonitis: a predictor of relaparotomy? World J Surg. 2008; 32(8): 1851–1856.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

VM Media sp. z o.o. VM Group sp.k., Grupa Via Medica, Świętokrzyska 73 St., 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl