Tom 15, Nr 3-4 (2024)
Artykuł przeglądowy
Opublikowany online: 2025-02-28
Wyświetlenia strony 196
Wyświetlenia/pobrania artykułu 8
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Wpływ czynników żywieniowych na patogenezę trądziku pospolitego – aktualne spojrzenie

Iwona Polega, Katarzyna Pastusiak
Forum Zaburzeń Metabolicznych 2024;15(3-4):138-148.

Streszczenie

Wyniki badań przeprowadzonych w ostatnich latach wskazują na znaczny wpływ zwyczajów żywieniowych na patogenezę trądziku pospolitego (acne vulgaris). Trądzik pospolity to choroba skóry, której częstość występowania ostatnio wzrosła, obejmując zarówno młodzież, jak i dorosłych. Do procesów odpowiadających za wystąpienie trądziku zalicza się: kolonizację bakterii Cutibacterium acne, zaburzenia rogowacenia jednostek włosowo-łojowych, łojotok i stan zapalny. Dodatkowo wyróżnia się rolę pracy gospodarki hormonalnej, glukozowo-insulinowej, mikrobioty jelitowej oraz stresu oksydacyjnego w patogenezie trądziku. Dieta odpowiada częściowo za modulację powyższych obszarów , dlatego jej jakość może być istotnym czynnikiem odpowiadającym za nasilenie lub łagodzenie zmian trądzikowych. W niniejszym artykule dokonano obiektywnego przeglądu aktualnych doniesień naukowych dotyczących patogenezy trądziku oraz wpływu wybranych czynników żywieniowych na stan skóry trądzikowej. Analiza źródeł wskazuje, że dieta śródziemnomorska jest modelem żywienia, którego charakter może przyczyniać się do polepszenia stanu skóry.

Referencje

  1. Baranowska A, Krajweska-Kułak E, Jankowiak B, et al. Ocena jakości życia pacjentów z trądzikiem pospolitym z wykorzystaniem skal DLQI i CADI. Probl Hig i Epidemiol. 2014; 95(3): 713–722.
  2. Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol. 2013; 22(5): 311–315.
  3. Agamia NF, Abdallah DM, Sorour O, et al. Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulin-like growth factor-1 in patients with acne vulgaris and their relationship with diet. Br J Dermatol. 2016; 174(6): 1299–1307.
  4. Szybiak W, Jarzemska M, Kowalczyk M, et al. Selected hormone levels and lipid abnormalities in patients with acne vulgaris. Postepy Dermatol Alergol. 2023; 40(6): 798–807.
  5. Zhang R, Zhou L, Lv M, et al. The Relevant of Sex Hormone Levels and Acne Grades in Patients with Acne Vulgaris: A Cross-Sectional Study in Beijing. Clin Cosmet Investig Dermatol. 2022; 15: 2211–2219.
  6. Kumtornrut C, Yamauchi T, Koike S, et al. Androgens modulate keratinocyte differentiation indirectly through enhancing growth factor production from dermal fibroblasts. J Dermatol Sci. 2019; 93(3): 150–158.
  7. Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol. 2009; 18(10): 833–841.
  8. Cappel M, Mauger D, Thiboutot D. Correlation between serum levels of insulin-like growth factor 1, dehydroepiandrosterone sulfate, and dihydrotestosterone and acne lesion counts in adult women. Arch Dermatol. 2005; 141(3): 333–338.
  9. Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol. 2013; 22(5): 311–315.
  10. Cao Q, Guo J, Chang S, et al. Gut microbiota and acne: a Mendelian randomization study. Skin Res Technol. 2023; 29(9): e13473.
  11. Huang Y, Liu Lu, Chen L, et al. Gender-Specific differences in gut microbiota composition associated with microbial metabolites for patients with acne vulgaris. Ann Dermatol. 2021; 33(6): 531–540.
  12. Smith RN, Mann NJ, Braue A, et al. A low-glycemic-load diet improves symptoms in acne vulgaris patients: a randomized controlled trial. Am J Clin Nutr. 2007; 86(1): 107–115.
  13. Smith RN, Braue A, Varigos GA, et al. The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides. J Dermatol Sci. 2008; 50(1): 41–52.
  14. Burris J, Shikany JM, Rietkerk W, et al. A low glycemic index and glycemic load diet decreases insulin-like growth factor-1 among adults with moderate and severe acne: a short-duration, 2-week randomized controlled trial. J Acad Nutr Diet. 2018; 118(10): 1874–1885.
  15. Ismail NH, Manaf ZA, Azizan NZ. High glycemic load diet, milk and ice cream consumption are related to acne vulgaris in Malaysian young adults: a case control study. BMC Dermatol. 2012; 12: 13.
  16. Kwon HH, Yoon JiY, Hong JS, et al. Clinical and histological effect of a low glycaemic load diet in treatment of acne vulgaris in Korean patients: a randomized, controlled trial. Acta Derm Venereol. 2012; 92(3): 241–246.
  17. Ulvestad M, Bjertness E, Dalgard F, et al. Acne and dairy products in adolescence: results from a Norwegian longitudinal study. J Eur Acad Dermatol Venereol. 2017; 31(3): 530–535.
  18. Aghasi M, Golzarand M, Shab-Bidar S, et al. Dairy intake and acne development: a meta-analysis of observational studies. Clin Nutr. 2019; 38(3): 1067–1075.
  19. Juhl CR, Bergholdt HKM, Miller IM, et al. Dairy intake and acne vulgaris: a systematic review and meta-analysis of 78,529 children, adolescents, and young adults. Nutrients. 2018; 10(8).
  20. Adebamowo CA, Spiegelman D, Berkey CS, et al. Milk consumption and acne in teenaged boys. J Am Acad Dermatol. 2008; 58(5): 787–793.
  21. Adebamowo CA, Spiegelman D, Berkey CS, et al. Milk consumption and acne in adolescent girls. Dermatol Online J. 2006; 12(4): 1.
  22. Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013; 12: 103.
  23. Su YT, Zouboulis CC, Cui W, et al. Lactoferrin regulates sebogenesis and inflammation in SZ95 human sebocytes and mouse model of acne. J Cosmet Dermatol. 2023; 22(4): 1361–1368.
  24. Kim J, Ko Y, Park YK, et al. Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and clinical improvement of acne vulgaris. Nutrition. 2010; 26(9): 902–909.
  25. Mueller EA, Trapp S, Frentzel A, et al. Efficacy and tolerability of oral lactoferrin supplementation in mild to moderate acne vulgaris: an exploratory study. Curr Med Res Opin. 2011; 27(4): 793–797.
  26. Mach F, Baigent C, Catapano AL, et al. i in. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2020; 41(1): 111–188.
  27. Guertler A, Fiedler T, Lill D, et al. Deficit of omega-3 fatty acids in acne patients-a cross-sectional pilot study in a german cohort. Life (Basel). 2024; 14(4).
  28. Huang Y, Liu F, Lai J, et al. The adjuvant treatment role of ω-3 fatty acids by regulating gut microbiota positively in the acne vulgaris. J Dermatolog Treat. 2024; 35(1): 2299107.
  29. Jung JY, Kwon HH, Hong JS, et al. Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: a randomised, double-blind, controlled trial. Acta Derm Venereol. 2014; 94(5): 521–525.
  30. de Souza Pereira R. Treatment of resistant acne vulgaris in adolescents using dietary supplementation with magnesium, phosphate and fatty acids (omega 6 and 7): comparison with 13-cis-retinoic acid. J Diet Suppl. 2023; 20(5): 706–716.
  31. Prati C, Pilar EF, Cartel A, et al. Dietary supplementation with gamma-linolenic, linoleic and oleic acids decreases PPAR-gamma expression and helps the tetracycline derivative to reduce NOD2 expression in patients with acne vulgaris. An Bras Dermatol. 2022; 97(2): 253–257.
  32. El-Akawi Z, Abdel-Latif N, Abdul-Razzak K. Does the plasma level of vitamins A and E affect acne condition? Clin Exp Dermatol. 2006; 31(3): 430–434.
  33. Cook M, Perche P, Feldman S. Oral vitamin A for acne management: a possible substitute for isotretinoin. J Drugs Dermatol. 2022; 21(6): 683–686.
  34. Burgoon CF, Graham JH, Urbach F, et al. Effect of vitamin A on epithelial cells of skin. The use of vitamin A in the treatment of diseases characterized by abnormal keratinization. Arch Dermatol. 1963; 87(1): 63–80.
  35. Kalkoff KW, Bickhardt R. [Optimal dosage in peroral therapy of acne with vitamin A palmitate]. Hautarzt. 1976; 27(4): 160–165.
  36. Jaffary F, Faghihi G, Mokhtarian A, et al. Effects of oral vitamin E on treatment of atopic dermatitis: a randomized controlled trial. J Res Med Sci. 2015; 20(11): 1053–1057.
  37. Strauss JS, Gottlieb AB, Jones T, et al. Concomitant administration of vitamin E does not change the side effects of isotretinoin as used in acne vulgaris: a randomized trial. J Am Acad Dermatol. 2000; 43(5 Pt 1): 777–784.
  38. Lim SK, Ha JM, Lee YH, et al. Comparison of vitamin D levels in patients with and without acne: a case-control study combined with a randomized controlled trial. PLoS One. 2016; 11(8): e0161162.
  39. Iqbal T, Asim SA, Bhatti S, et al. Association of vitamin D with moderate to severe acne vulgaris. J Coll Physicians Surg Pak. 2023; 33(5): 527–530.
  40. Singh A, Khurana A, Sardana K, et al. Correlation of Serum 25-Hydroxy Vitamin D and Interleukin-17 Levels with Disease Severity in Acne Vulgaris. Indian J Dermatol. 2021; 66(3): 291–296.
  41. Ghorpade A, Reddy BSN, Rizvi SNA. Plasma zinc levels and the effect of oral zinc in acne vulgaris. Indian J Dermatol Venereol Leprol. 1982; 48(3): 129–137.
  42. Rebello T, Atherton DJ, Holden C. The effect of oral zinc administration on sebum free fatty acids in acne vulgaris. Acta Derm Venereol. 1986; 66(4): 305–310.
  43. Verma KC, Saini AS, Dhamija SK. Oral zinc sulphate therapy in acne vulgaris: a double-blind trial. Acta Derm Venereol. 1980; 60(4): 337–340.
  44. Michaëlsson G. Decreased concentration of selenium in whole blood and plasma in acne vulgaris. Acta Derm Venereol. 1990; 70(1): 92.
  45. Michaëlsson G, Edqvist LE. Erythrocyte glutathione peroxidase activity in acne vulgaris and the effect of selenium and vitamin E treatment. Acta Derm Venereol. 1984; 64(1): 9–14.
  46. Razavi M, Jamilian M, Kashan ZF, et al. Selenium supplementation and the effects on reproductive outcomes, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome. Horm Metab Res. 2016; 48(3): 185–190.
  47. Mansour A, Samadi M, Sanginabadi M, et al. Effect of resveratrol on menstrual cyclicity, hyperandrogenism and metabolic profile in women with PCOS. Clin Nutr. 2021; 40(6): 4106–4112.
  48. Rondanelli M, Riva A, Petrangolini G, et al. Berberine phospholipid is an effective insulin sensitizer and improves metabolic and hormonal disorders in women with polycystic ovary syndrome: a one-group pretest-post-test explanatory study. Nutrients. 2021; 13(10).
  49. Hill C, Guarner F, Reid G, et al. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014; 11(8): 506–514.
  50. Kim MJ, Kim KP, Choi E, et al. Effects of CJLP55 on Clinical Improvement, Skin Condition and Urine Bacterial Extracellular Vesicles in Patients with Acne Vulgaris: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients. 2021; 13(4).
  51. Eguren C, Navarro-Blasco A, Corral-Forteza M, et al. A randomized clinical trial to evaluate the efficacy of an oral probiotic in acne vulgaris. Acta Derm Venereol. 2024; 104: adv33206.
  52. Pineiro M, Asp NG, Reid G, et al. FAO Technical meeting on prebiotics. J Clin Gastroenterol. 2008; 42 Suppl 3 Pt 2: S156–S159.
  53. Dall'Oglio F, Milani M, Micali G. Effects of oral supplementation with FOS and GOS prebiotics in women with adult acne: the "S.O. Sweet" study: a proof-of-concept pilot trial. Clin Cosmet Investig Dermatol. 2018; 11: 445–449.
  54. Lichtenstein AH, Appel LJ, Vadiveloo M, et al. 2021 dietary guidance to improve cardiovascular health: a scientific statement from the American Heart Association. Circulation. 2021; 144(23): e472–e487.
  55. Bertolani M, Rodighiero E, Saleri R, et al. The influence of Mediterranean diet in acne pathogenesis and the correlation with insulin-like growth factor-1 serum levels: Implications and results. Dermatol Reports. 2022; 14(1): 9143.