Vol 12, No 4 (2018)
Review paper
Published online: 2019-01-21

open access

Page views 1218
Article views/downloads 3562
Get Citation

Connect on Social Media

Connect on Social Media

The role of metabolites in morphine analgesic effects

Zbigniew Zylicz12
Palliat Med Pract 2018;12(4):198-202.

Abstract

Morphine is metabolized into two main metabolites, morphine-3-glucuronide and morphine-6-glucuronide. Morphine-6-glucuronide is a potent analgesic that is responsible for up to 97% of the analgesic effect. Morphine-3-glucuronide does not bind to opioid receptors and is devoid of any analgesic effect. However, it activates the Toll-like 4 receptors initiating neurogenic inflammation in the central nervous system. This, in turn, is responsible for anti–analgesic and hyperalgesic effects. There are a number of strategies on how to inhibit this pronociceptive effect and finally improve morphine analgesia.
Palliat Med Pract 2018; 12, 4: 198–202

Article available in PDF format

View PDF Download PDF file

References

  1. Schmitz R. Friedrich Wilhelm Sertürner and the discovery of morphine. Pharm Hist. 1985; 27(2): 61–74.
  2. Wiffen PJ, Wee B, Moore RA. Oral morphine for cancer pain. Cochrane Database Syst Rev. 2016; 4: CD003868.
  3. WHO. Cancer Pain Relief. Geneva. 1986.
  4. Berkowitz BA. The relationship of pharmacokinetics to pharmacological activity: morphine, methadone and naloxone. Clin Pharmacokinet. 1976; 1(3): 219–230.
  5. Yi P, Pryzbylkowski P. Opioid Induced Hyperalgesia. Pain Med. 2015; 16 Suppl 1: S32–S36.
  6. Säwe J, Svensson JO, Rane A. Morphine metabolism in cancer patients on increasing oral doses--no evidence for autoinduction or dose-dependence. Br J Clin Pharmacol. 1983; 16(1): 85–93.
  7. Janowiak P, Krajnik M, Podolec Z, et al. Dosimetrically administered nebulized morphine for breathlessness in very severe chronic obstructive pulmonary disease: a randomized, controlled trial. BMC Pulm Med. 2017; 17(1): 186.
  8. Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit. 1991; 13(1): 1–23.
  9. Lugo RA, Kern SE. Clinical pharmacokinetics of morphine. J Pain Palliat Care Pharmacother. 2002; 16(4): 5–18.
  10. De Gregori S, De Gregori M, Ranzani GN, et al. Morphine metabolism, transport and brain disposition. Metab Brain Dis. 2012; 27(1): 1–5.
  11. Sverrisdóttir E, Lund TM, Olesen AE, et al. A review of morphine and morphine-6-glucuronide's pharmacokinetic-pharmacodynamic relationships in experimental and clinical pain. Eur J Pharm Sci. 2015; 74: 45–62.
  12. Projean D, Morin PE, Tu TM, et al. Identification of CYP3A4 and CYP2C8 as the major cytochrome P450 s responsible for morphine N-demethylation in human liver microsomes. Xenobiotica. 2003; 33(8): 841–854.
  13. Nagamatsu K, Ohno Y, Ikebuchi H, et al. Morphine metabolism in isolated rat hepatocytes and its implications for hepatotoxicity. Biochem Pharmacol. 1986; 35(20): 3543–3548.
  14. Hasselström J, Säwe J. Morphine pharmacokinetics and metabolism in humans. Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin Pharmacokinet. 1993; 24(4): 344–354.
  15. Hasselström J, Eriksson S, Persson A, et al. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol. 1990; 29(3): 289–297.
  16. Boström E, Hammarlund-Udenaes M, Simonsson USH. Blood-brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine. Anesthesiology. 2008; 108(3): 495–505.
  17. Dewanjee S, Dua TK, Bhattacharjee N, et al. Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition. Molecules. 2017; 22(6).
  18. Sattari M, Routledge Pa, Mashayekhi So. The influence of active transport systems on morphine -6-glucuronide transport in MDCKII and MDCK-PGP cells. Daru. 2011; 19(6): 412–416.
  19. Bourasset F, Cisternino S, Temsamani J, et al. Evidence for an active transport of morphine-6-beta-d-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. J Neurochem. 2003; 86(6): 1564–1567.
  20. Binning AR, Przesmycki K, Sowinski P, et al. A randomised controlled trial on the efficacy and side-effect profile (nausea/vomiting/sedation) of morphine-6-glucuronide versus morphine for post-operative pain relief after major abdominal surgery. Eur J Pain. 2011; 15(4): 402–408.
  21. Meineke I, Freudenthaler S, Hofmann U, et al. Pharmacokinetic modelling of morphine, morphine-3-glucuronide and morphine-6-glucuronide in plasma and cerebrospinal fluid of neurosurgical patients after short-term infusion of morphine. Br J Clin Pharmacol. 2002; 54(6): 592–603.
  22. Schmid HP, Gregorin J, Altwein JE. Growth hormone inhibitors in prostate cancer: a systematic analysis. Urol Int. 2008; 81(1): 17–22.
  23. Innocenti F, Liu W, Fackenthal D, et al. Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genomics. 2008; 18(8): 683–697.
  24. Darbari DS, Minniti CP, Rana S, et al. Pharmacogenetics of morphine: Potential implications in sickle cell disease. Am J Hematol. 2008; 83(3): 233–236.
  25. Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther. 1989; 251(2): 477–483.
  26. Klimas R, Mikus G. Morphine-6-glucuronide is responsible for the analgesic effect after morphine administration: a quantitative review of morphine, morphine-6-glucuronide, and morphine-3-glucuronide. Br J Anaesth. 2014; 113(6): 935–944.
  27. Bodd E, Jacobsen D, Lund E, et al. Morphine-6-glucuronide might mediate the prolonged opioid effect of morphine in acute renal failure. Hum Exp Toxicol. 1990; 9(5): 317–321.
  28. Hanna MH, D'Costa F, Peat SJ, et al. Morphine-6-glucuronide disposition in renal impairment. Br J Anaesth. 1993; 70(5): 511–514.
  29. Leierer J, Rudnicki M, Braniff SJ, et al. Metallothioneins and renal ageing. Nephrol Dial Transplant. 2016; 31(9): 1444–1452.
  30. Pasternak GW, Bodnar RJ, Clark JA, et al. Morphine-6-glucuronide, a potent mu agonist. Life Sci. 1987; 41(26): 2845–2849.
  31. Penson RT, Joel SP, Clark S, et al. Limited phase I study of morphine-3-glucuronide. J Pharm Sci. 2001; 90(11): 1810–1816.
  32. Sear JW, Hand CW, Moore RA, et al. Studies on morphine disposition: influence of renal failure on the kinetics of morphine and its metabolites. Br J Anaesth. 1989; 62(1): 28–32.
  33. Smith MT, Watt JA, Cramond T. Morphine-3-glucuronide--a potent antagonist of morphine analgesia. Life Sci. 1990; 47(6): 579–585.
  34. Gong QL, Hedner J, Björkman R, et al. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain. 1992; 48(2): 249–255.
  35. Lewis SS, Hutchinson MR, Rezvani N, et al. Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience. 2010; 165(2): 569–583.
  36. Hutchinson MR, Lewis SS, Coats BD, et al. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience. 2010; 167(3): 880–893.
  37. Hutchinson MR, Northcutt AL, Hiranita T, et al. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci. 2012; 32(33): 11187–11200.
  38. Matzinger P. The danger model: a renewed sense of self. Science. 2002; 296(5566): 301–305.
  39. Steinhoff M, Ständer S, Seeliger S, et al. Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol. 2003; 139(11): 1479–1488.
  40. Richardson JD, Vasko MR. Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther. 2002; 302(3): 839–845.
  41. Moresco EM, LaVine D, Beutler B. Toll-like receptors. Curr Biol. 2011; 21(13): R488–R493.
  42. Zhang K, Zhou B, Wang Y, et al. The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis. Eur J Cancer. 2013; 49(4): 946–954.
  43. Płóciennikowska A, Hromada-Judycka A, Borzęcka K, et al. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015; 72(3): 557–581.
  44. Liu Yu, Yin H, Zhao M, et al. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol. 2014; 47(2): 136–147.
  45. Guo LH, Schluesener HJ. The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell Mol Life Sci. 2007; 64(9): 1128–1136.
  46. Hutchinson MR, Zhang Y, Shridhar M, et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun. 2010; 24(1): 83–95.
  47. Grace PM, Ramos KM, Rodgers KM, et al. Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience. 2014; 280: 299–317.
  48. Ji RR. Neuroimmune interactions in itch: Do chronic itch, chronic pain, and chronic cough share similar mechanisms? Pulm Pharmacol Ther. 2015; 35: 81–86.
  49. Lewis SS, Loram LC, Hutchinson MR, et al. (+)-naloxone, an opioid-inactive toll-like receptor 4 signaling inhibitor, reverses multiple models of chronic neuropathic pain in rats. J Pain. 2012; 13(5): 498–506.
  50. Mika J. Modulation of microglia can attenuate neuropathic pain symptoms and enhance morphine effectiveness. Pharmacol Rep. 2008; 60(3): 297–307.
  51. Peri F, Piazza M. Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol Adv. 2012; 30(1): 251–260.
  52. O'Neill LAJ. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov. 2006; 5(7): 549–563.
  53. Hutchinson MR, Loram LC, Zhang Y, et al. Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience. 2010; 168(2): 551–563.