open access

Vol 12, No 4 (2018)
Review articles
Published online: 2019-01-21
Get Citation

The role of metabolites in morphine analgesic effects

Zbigniew Zylicz
DOI: 10.5603/PMPI.2018.0011
·
Palliat Med Pract 2018;12(4):198-202.

open access

Vol 12, No 4 (2018)
Review articles
Published online: 2019-01-21

Abstract

Morphine is metabolized into two main metabolites, morphine-3-glucuronide and morphine-6-glucuronide. Morphine-6-glucuronide is a potent analgesic that is responsible for up to 97% of the analgesic effect. Morphine-3-glucuronide does not bind to opioid receptors and is devoid of any analgesic effect. However, it activates the Toll-like 4 receptors initiating neurogenic inflammation in the central nervous system. This, in turn, is responsible for anti–analgesic and hyperalgesic effects. There are a number of strategies on how to inhibit this pronociceptive effect and finally improve morphine analgesia.
Palliat Med Pract 2018; 12, 4: 198–202

Abstract

Morphine is metabolized into two main metabolites, morphine-3-glucuronide and morphine-6-glucuronide. Morphine-6-glucuronide is a potent analgesic that is responsible for up to 97% of the analgesic effect. Morphine-3-glucuronide does not bind to opioid receptors and is devoid of any analgesic effect. However, it activates the Toll-like 4 receptors initiating neurogenic inflammation in the central nervous system. This, in turn, is responsible for anti–analgesic and hyperalgesic effects. There are a number of strategies on how to inhibit this pronociceptive effect and finally improve morphine analgesia.
Palliat Med Pract 2018; 12, 4: 198–202

Get Citation

Keywords

pain, morphine metabolism, morphine-3-glucuronide, morphine-6-glucuronide, opioid receptors, analgesia, Toll-like 4 receptors

About this article
Title

The role of metabolites in morphine analgesic effects

Journal

Palliative Medicine in Practice

Issue

Vol 12, No 4 (2018)

Pages

198-202

Published online

2019-01-21

DOI

10.5603/PMPI.2018.0011

Bibliographic record

Palliat Med Pract 2018;12(4):198-202.

Keywords

pain
morphine metabolism
morphine-3-glucuronide
morphine-6-glucuronide
opioid receptors
analgesia
Toll-like 4 receptors

Authors

Zbigniew Zylicz

References (53)
  1. Schmitz R. Friedrich Wilhelm Sertürner and the discovery of morphine. Pharm Hist. 1985; 27(2): 61–74.
  2. Wiffen PJ, Wee B, Moore RA. Oral morphine for cancer pain. Cochrane Database Syst Rev. 2016; 4: CD003868.
  3. WHO. Cancer Pain Relief. Geneva. 1986.
  4. Berkowitz BA. The relationship of pharmacokinetics to pharmacological activity: morphine, methadone and naloxone. Clin Pharmacokinet. 1976; 1(3): 219–230.
  5. Yi P, Pryzbylkowski P. Opioid Induced Hyperalgesia. Pain Med. 2015; 16 Suppl 1: S32–S36.
  6. Säwe J, Svensson JO, Rane A. Morphine metabolism in cancer patients on increasing oral doses--no evidence for autoinduction or dose-dependence. Br J Clin Pharmacol. 1983; 16(1): 85–93.
  7. Janowiak P, Krajnik M, Podolec Z, et al. Dosimetrically administered nebulized morphine for breathlessness in very severe chronic obstructive pulmonary disease: a randomized, controlled trial. BMC Pulm Med. 2017; 17(1): 186.
  8. Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit. 1991; 13(1): 1–23.
  9. Lugo RA, Kern SE. Clinical pharmacokinetics of morphine. J Pain Palliat Care Pharmacother. 2002; 16(4): 5–18.
  10. De Gregori S, De Gregori M, Ranzani GN, et al. Morphine metabolism, transport and brain disposition. Metab Brain Dis. 2012; 27(1): 1–5.
  11. Sverrisdóttir E, Lund TM, Olesen AE, et al. A review of morphine and morphine-6-glucuronide's pharmacokinetic-pharmacodynamic relationships in experimental and clinical pain. Eur J Pharm Sci. 2015; 74: 45–62.
  12. Projean D, Morin PE, Tu TM, et al. Identification of CYP3A4 and CYP2C8 as the major cytochrome P450 s responsible for morphine N-demethylation in human liver microsomes. Xenobiotica. 2003; 33(8): 841–854.
  13. Nagamatsu K, Ohno Y, Ikebuchi H, et al. Morphine metabolism in isolated rat hepatocytes and its implications for hepatotoxicity. Biochem Pharmacol. 1986; 35(20): 3543–3548.
  14. Hasselström J, Säwe J. Morphine pharmacokinetics and metabolism in humans. Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin Pharmacokinet. 1993; 24(4): 344–354.
  15. Hasselström J, Eriksson S, Persson A, et al. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol. 1990; 29(3): 289–297.
  16. Boström E, Hammarlund-Udenaes M, Simonsson USH. Blood-brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine. Anesthesiology. 2008; 108(3): 495–505.
  17. Dewanjee S, Dua TK, Bhattacharjee N, et al. Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition. Molecules. 2017; 22(6).
  18. Sattari M, Routledge Pa, Mashayekhi So. The influence of active transport systems on morphine -6-glucuronide transport in MDCKII and MDCK-PGP cells. Daru. 2011; 19(6): 412–416.
  19. Bourasset F, Cisternino S, Temsamani J, et al. Evidence for an active transport of morphine-6-beta-d-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. J Neurochem. 2003; 86(6): 1564–1567.
  20. Binning AR, Przesmycki K, Sowinski P, et al. A randomised controlled trial on the efficacy and side-effect profile (nausea/vomiting/sedation) of morphine-6-glucuronide versus morphine for post-operative pain relief after major abdominal surgery. Eur J Pain. 2011; 15(4): 402–408.
  21. Meineke I, Freudenthaler S, Hofmann U, et al. Pharmacokinetic modelling of morphine, morphine-3-glucuronide and morphine-6-glucuronide in plasma and cerebrospinal fluid of neurosurgical patients after short-term infusion of morphine. Br J Clin Pharmacol. 2002; 54(6): 592–603.
  22. Schmid HP, Gregorin J, Altwein JE. Growth hormone inhibitors in prostate cancer: a systematic analysis. Urol Int. 2008; 81(1): 17–22.
  23. Innocenti F, Liu W, Fackenthal D, et al. Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genomics. 2008; 18(8): 683–697.
  24. Darbari DS, Minniti CP, Rana S, et al. Pharmacogenetics of morphine: Potential implications in sickle cell disease. Am J Hematol. 2008; 83(3): 233–236.
  25. Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther. 1989; 251(2): 477–483.
  26. Klimas R, Mikus G. Morphine-6-glucuronide is responsible for the analgesic effect after morphine administration: a quantitative review of morphine, morphine-6-glucuronide, and morphine-3-glucuronide. Br J Anaesth. 2014; 113(6): 935–944.
  27. Bodd E, Jacobsen D, Lund E, et al. Morphine-6-glucuronide might mediate the prolonged opioid effect of morphine in acute renal failure. Hum Exp Toxicol. 1990; 9(5): 317–321.
  28. Hanna MH, D'Costa F, Peat SJ, et al. Morphine-6-glucuronide disposition in renal impairment. Br J Anaesth. 1993; 70(5): 511–514.
  29. Leierer J, Rudnicki M, Braniff SJ, et al. Metallothioneins and renal ageing. Nephrol Dial Transplant. 2016; 31(9): 1444–1452.
  30. Pasternak GW, Bodnar RJ, Clark JA, et al. Morphine-6-glucuronide, a potent mu agonist. Life Sci. 1987; 41(26): 2845–2849.
  31. Penson RT, Joel SP, Clark S, et al. Limited phase I study of morphine-3-glucuronide. J Pharm Sci. 2001; 90(11): 1810–1816.
  32. Sear JW, Hand CW, Moore RA, et al. Studies on morphine disposition: influence of renal failure on the kinetics of morphine and its metabolites. Br J Anaesth. 1989; 62(1): 28–32.
  33. Smith MT, Watt JA, Cramond T. Morphine-3-glucuronide--a potent antagonist of morphine analgesia. Life Sci. 1990; 47(6): 579–585.
  34. Gong QL, Hedner J, Björkman R, et al. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain. 1992; 48(2): 249–255.
  35. Lewis SS, Hutchinson MR, Rezvani N, et al. Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience. 2010; 165(2): 569–583.
  36. Hutchinson MR, Lewis SS, Coats BD, et al. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience. 2010; 167(3): 880–893.
  37. Hutchinson MR, Northcutt AL, Hiranita T, et al. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci. 2012; 32(33): 11187–11200.
  38. Matzinger P. The danger model: a renewed sense of self. Science. 2002; 296(5566): 301–305.
  39. Steinhoff M, Ständer S, Seeliger S, et al. Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol. 2003; 139(11): 1479–1488.
  40. Richardson JD, Vasko MR. Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther. 2002; 302(3): 839–845.
  41. Moresco EM, LaVine D, Beutler B. Toll-like receptors. Curr Biol. 2011; 21(13): R488–R493.
  42. Zhang K, Zhou B, Wang Y, et al. The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis. Eur J Cancer. 2013; 49(4): 946–954.
  43. Płóciennikowska A, Hromada-Judycka A, Borzęcka K, et al. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015; 72(3): 557–581.
  44. Liu Yu, Yin H, Zhao M, et al. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol. 2014; 47(2): 136–147.
  45. Guo LH, Schluesener HJ. The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell Mol Life Sci. 2007; 64(9): 1128–1136.
  46. Hutchinson MR, Zhang Y, Shridhar M, et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun. 2010; 24(1): 83–95.
  47. Grace PM, Ramos KM, Rodgers KM, et al. Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience. 2014; 280: 299–317.
  48. Ji RR. Neuroimmune interactions in itch: Do chronic itch, chronic pain, and chronic cough share similar mechanisms? Pulm Pharmacol Ther. 2015; 35: 81–86.
  49. Lewis SS, Loram LC, Hutchinson MR, et al. (+)-naloxone, an opioid-inactive toll-like receptor 4 signaling inhibitor, reverses multiple models of chronic neuropathic pain in rats. J Pain. 2012; 13(5): 498–506.
  50. Mika J. Modulation of microglia can attenuate neuropathic pain symptoms and enhance morphine effectiveness. Pharmacol Rep. 2008; 60(3): 297–307.
  51. Peri F, Piazza M. Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol Adv. 2012; 30(1): 251–260.
  52. O'Neill LAJ. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov. 2006; 5(7): 549–563.
  53. Hutchinson MR, Loram LC, Zhang Y, et al. Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience. 2010; 168(2): 551–563.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Medycyna Paliatywna w Praktyce dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl