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Abstract
Morphine is metabolized into two main metabolites, morphine-3-glucuronide and morphine-6-glucuronide. 
Morphine-6-glucuronide is a potent analgesic that is responsible for up to 97% of the analgesic effect. 
Morphine-3-glucuronide does not bind to opioid receptors and is devoid of any analgesic effect. However, 
it activates the Toll-like 4 receptors initiating neurogenic inflammation in the central nervous system. This, 
in turn, is responsible for anti–analgesic and hyperalgesic effects. There are a number of strategies on how 
to inhibit this pronociceptive effect and finally improve morphine analgesia.
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Introduction

Morphine as a drug isolated from opium is known 
in medicine for more than 200 years [1]. It is one of 
the most important and efficacious drugs used in pain 
treatment [2]. Slightly less well known is morphine’s 
effect on breathlessness and diarrhoea. Morphine 
experienced its renaissance at the end of the past 
century when it became evident that it is, despite 
its shortcomings, a cheap, good and powerful drug 
for the treatment of cancer-related pain [3]. Earlier 
morphine was considered to be unable to reach 
sufficient concentrations in blood because of the 
first pass metabolism in the liver [4]. Tolerance and 
opioid-induced hyperalgesia [5] belong to the most 
feared features of morphine. The fact that morphine 
is metabolized to glucuronides is known for several 
decades [6]. However, the exact role of these metab-
olites in the morphine analgesia is still a matter of 
debate and uncertainty. The role of metabolites and 

strategies on how to influence their activity will be 
discussed in this paper.

Pharmacology

Morphine is a hydrophilic drug and it can be 
administered orally, subcutaneously, intravenously, 
intramuscularly, intrathecally, epidurally, and rectal-
ly. Additionally, nebulized morphine can be used in 
the treatment of breathlessness [7]. After parenteral 
administration, it penetrates easily to the central 
compartment and especially to the well–perfused 
organs. It is eliminated from the central compartment 
with the T½ of 1.4–3.4 hours. Similar elimination T½ is 
observed after oral, subcutaneous, intravenous, and 
intramuscular administration [8, 9].

After oral administration morphine is fully absorbed 
from the gut and transported to the liver, where it un-
dergoes rapid metabolism to two main metabolites: 
morphine-3-glucuronide (M3G) and morphine-6-glu-
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curonide (M6G) [10]. The enzyme responsible for 
this, UGT2D7 metabolizes morphine in a constant 
proportion of M6G/M3G 1:9 [10]. Brain and other 
tissues may have variant enzymes, so we only assume 
that the proportion known from the liver metabolism 
is the same in all other tissues [11]. A small quantity of 
morphine is metabolised in the liver to normorphine 
by a CYP3A4 enzyme [12]. However, normorphine is 
a much weaker analgesic than morphine and does 
not appear to be toxic [13]. The overall bioavailability 
of morphine is variable and is approximately 20–30% 
[14]. The drug with this profile would never be licensed 
to be used in the 21st century. The unpredictability of 
the bioavailability is reflected by the individual doses 
of morphine and the need of the dose titration until 
analgesia is achieved. Approximately 10% of the orig-
inal dose is excreted unchanged with urine. The rest is 
excreted by the kidney as glucuronides and as other 
minor metabolites with the bile [15].

Diffusion of morphine 
and its metabolites through 
the blood-brain barrier

Morphine, as a hydrophilic drug, penetrates with 
difficulty through the blood-brain barrier in a paracel-
lular mode [10]. This means, that the drug needs to 
accumulate considerably at the blood side to create 
enough gradient. Once in, some of the drug is active-
ly pumped out by a P-glycoprotein [16]. Inhibition 
of this enzyme by a number of drugs and naturally 
occurring substances may increase morphine toxicity 
[17]. More hydrophilic metabolites cross the blood-
brain barrier with even greater difficulty. However, 
M6G is probably primarily actively transported into 
the brain by the endothelial Oatp2 protein [18, 19]. 
This may explain M6G analgesic potency when given 
parenterally in the treatment of postoperative pain 
which is comparable to morphine itself [20]. Anyway, 
in the liquor part of the M6G originates from liver 
metabolism and part is synthesized de novo in the 
brain [21] Brain UGT2B7 glucuronidase appears in 
a number of variants [22] One of these variants oc-
curs in the sickle cell disease and it causes decreased 
glucuronidation of morphine [23]. It explains why 
morphine is inefficacious in the pain crisis during this 
disease [24]. Naloxone, which crosses the blood-brain 
barrier abolishes fully morphine analgesia, while the 
naloxone derivatives which do not cross the blood-
brain barrier show no effect. 

M6G administered systemically in humans has 
an analgesic potency roughly equal to those of mor-
phine [20]. However, the same drug administered 
intracerebrally in rats is 100 times more potent 

than morphine [25]. In the first hours, systemically 
administered morphine is more potent compared 
to systemically administered M6G. This is probably 
due to slow diffusion through the blood–brain bar-
rier. The cycle morphine-diffusion-metabolism in the 
brain to M6G is faster than the diffusion of M6G. It 
is estimated that 91–97% of the analgesic effect of 
morphine is due to M6G [26] and morphine can be 
seen as a pro–drug. However, in the case of renal 
insufficiency M6G will accumulate and can be toxic 
or even lethal [27, 28]. Renal function declines with 
age and at the age of 90 years, it is only half of the 
original value in children [29]. This is also the reason 
why children and adolescents need higher morphine 
doses in comparison to the geriatric population. 

The role of morphine-3-glucuronide 
in pain treatment

M3G does not bind to any opioid receptor and 
is devoid of any analgesic effect [30]. In a very high 
dose, 30 mg IV, administered to healthy subjects it 
did not show any pharmacological effect [31]. It does 
not cross the blood-brain barrier.10 Plasma concen-
trations of M3G increase in renal insufficiency [32]. 
And yet, M3G for many years has been suspected 
to act antagonistically to morphine, and to induce 
opioid-induced hyperalgesia [33, 34]. A long search 
revealed its binding to the Toll-Like 4 receptors (TLR4) 
on the microglial cells and on macrophages [35–37]. 
TLR4 is one of many Toll-like receptors that organize 
an innate immune response reacting to foreign and 
endogenous harmful impulses, most often bacterial 
lipopolysaccharides (LPS) [38]. TLR4 is the key factor 
for all processes that for many years were collective-
ly named neurogenic inflammation [39, 40]. These 
receptors bind a wide range of drugs and are not 
stereoselective [41]. Recently, TLR4 were considered to 
be crucial for understanding the emergence of many 
diseases, such as neurodegenerative, autoimmune, 
infectious and/or neoplastic diseases [42–44], as well 
as chronic pain [45]. M3G activates TLR4 as com-
parably to the bacterial-derived lipopolysaccharides 
(LPS) [46] Activation of TLR4 increases production 
of inflammatory cytokines: TNF-a, IL-1b, IL-6 and 
IFN-g45 and prostaglandins [47]. TLR4 explain different 
phenomena such as tolerance, hyperalgesia, pruritus, 
and cough [47, 48].

Strategies to overcome Toll-like 4 
receptors activation

TLR4 inhibition with normally inactive on the opi-
oid receptors (+)-naloxone, results in the abolition of 
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morphine tolerance [47]. Moreover, treatment with 
(+)-naloxone greatly improved morphine analgesia 
in a rat nerve constriction model [49, 50]. It is not 
surprising that TLR4 has become an important target 
for new drugs [51]. Glucocorticoids have been shown 
to block certain genes involved in the activation of 
TLR4 [52]. Tricyclic antidepressants and selective 
serotonin reuptake inhibitors (SSRI) are known for 
their role in inhibition of Toll-like receptors and may 
be used to improve analgesic effects of opioids [53].

Summary

Morphine metabolism to two main metabolites 
M3G and M6G has been known for decades. The 
implications of this metabolism for pain treatment 
became apparent only recently. Morphine, in fact, 
is a pro–drug which needs to be glucuronidated to 
M6G and act in the spinal cord and brain. Part of this 
process starts already in the liver, during the first pass 
metabolism. Morphine crosses the blood-brain barrier 
easier than M6G but M6G can be actively transported 
by Oatp2 and by de novo synthesis of M6G from mor-
phine in the brain. Those mechanisms together make 
it possible that M6G is the main analgesic, responsible 
for up to 97% of morphine analgesic effect.

The second metabolite, M3G usually seen as inac-
tive and less important is the agonist to the TLR4 re-
sponsible for neurogenic inflammation in the brain. As 
such this process is antagonizing M6G analgesia and 
is involved in such phenomena as opioid-induced hy-
peralgesia, and opioid tolerance. There is a number of 
drugs that inhibit activation of TLR4 and pro–nocicep-
tive effects of M3G. Among them are corticosteroids, 
tricyclic antidepressants and SSRI. Some of them are 
used for this purpose already for decades. However, 
it is conceivable that soon a series of new drugs spe-
cifically designed to antagonize TLR4 but not binding 
to opioid receptors may become available.
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