Tom 18, Nr 4 (2023)
Inne materiały uzgodnione z Redakcją
Opublikowany online: 2024-04-23
Wyświetlenia strony 28
Wyświetlenia/pobrania artykułu 6
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Postępowanie ze zwapnieniami w tętnicach nasierdziowych

Aleksandra Karcińska1, Zuzanna Wyleciał1, Karolina Gutkowska1, Grzegorz Fibiger1, Kinga Glądys1, Jarosław Zalewski23, Krzysztof Karwat2
Kardiol Inwazyjna 2023;18(4):185-191.

Streszczenie

Zwapnienia tętnic wieńcowych stanowią wyzwanie dla przeprowadzenia udanych przezskórnych rewaskularyzacji i są jednym z czynników zwiększających ryzyko powikłań PCI, wpływając negatywnie na krótko- i długoterminowe rezultaty tej procedury. Konieczne są odpowiednie techniki modyfikujące zwapnienia w tętnicach wieńcowych, aby ułatwić wprowadzenie i rozprężenie stentu. Półpodatne i niepodatne cewniki balonowe stosowane tradycyjnie w angioplastyce nie są wystarczające, by poradzić sobie z ciężkimi zwapnieniami. Wysokociśnieniowe cewniki balonowe rozprężane są wyższymi ciśnieniami, co pozwala na lepsze przygotowanie ciężko uwapnionego naczynia do implantacji stentu. Alternatywne techniki modyfikacji blaszki miażdżycowej to balony tnące, punktujące, aterektomia rotacyjna, aterektomia orbitalna, litotrypsja wewnątrznaczyniowa i aterektomia laserowa. Biorąc pod uwagę zalety poszczególnych technik należy wybrać odpowiedni sposób postępowania w zależności od charakterystyki, lokalizacji zwężenia i doświadczenia. Niemniej jednak dane dotyczące zastosowania tych technik w określonych sytuacjach klinicznych są ograniczone i potrzebne są dalsze badania.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Madhavan MV, Tarigopula M, Mintz GS, et al. Coronary artery calcification: pathogenesis and prognostic implications. J Am Coll Cardiol. 2014; 63(17): 1703–1714.
  2. Nakahara T, Dweck MR, Narula N, et al. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging. 2017; 10(5): 582–593.
  3. Doost A, Rankin J, Sapontis J, et al. Contemporary evidence-based diagnosis and management of severe coronary artery calcification. Heart Lung Circ. 2022; 31(6): 766–778.
  4. De Maria GL, Scarsini R, Banning AP. Management of calcific coronary artery lesions: is it time to change our interventional therapeutic approach? JACC Cardiovasc Interv. 2019; 12(15): 1465–1478.
  5. Bourantas CV, Zhang YJ, Garg S, et al. Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: a patient-level pooled analysis of 7 contemporary stent trials. Heart. 2014; 100(15): 1158–1164.
  6. Généreux P, Madhavan MV, Mintz GS, et al. Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) and ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) TRIALS. J Am Coll Cardiol. 2014; 63(18): 1845–1854.
  7. Hennessey B, Pareek N, Macaya F, et al. Contemporary percutaneous management of coronary calcification: current status and future directions. Open Heart. 2023; 10(1).
  8. Christopoulos G, Luna M, Brilakis ES. The clinical implications of balloon rupture during cardiovascular interventions. J Invasive Cardiol. 2015; 27(4): E45–E50.
  9. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019; 40(2): 87–165.
  10. Seiler T, Attinger-Toller A, Cioffi GM, et al. Treatment of in-stent restenosis using a dedicated super high-pressure balloon. Cardiovasc Revasc Med. 2023; 46: 29–35.
  11. Fabris E, Caiazzo G, Kilic ID, et al. Is high pressure postdilation safe in bioresorbable vascular scaffolds? Optical coherence tomography observations after noncompliant balloons inflated at more than 24 atmospheres. Catheter Cardiovasc Interv. 2016; 87(5): 839–846.
  12. Rheude T, Rai H, Richardt G, et al. Super high-pressure balloon versus scoring balloon to prepare severely calcified coronary lesions: the ISAR-CALC randomised trial. EuroIntervention. 2021; 17(6): 481–488.
  13. Zhu X, Umezu M, Iwasaki K. Finite element analysis of cutting balloon expansion in a calcified artery model of circular angle 180°: Effects of balloon-to-diameter ratio and number of blades facing calcification on potential calcification fracturing and perforation reduction. PLoS One. 2021; 16(5): e0251404.
  14. Zhu X, Umezu M, Iwasaki K. Finite element analysis of the cutting balloon with an adequate balloon-to-artery ratio for fracturing calcification while preventing perforation. Circ Rep. 2020; 3(1): 1–8.
  15. Shimozato R, Hidaka Y, Nakagawa D, et al. In-stent restenosis of carotid and vertebral arteries treated by angioplasty using a cutting balloon: a case report. J Neuroendovasc Ther. 2021; 15(10): 672–680.
  16. Tsujimura T, Ishihara T, Takahashi K, et al. Cutting balloons versus conventional balloons for treating patients with coronary artery disease presenting with moderate-to-severely calcified lesions: impact on post-interventional minimum stent area. Cardiovasc Interv Ther. 2022; 37(4): 700–709.
  17. Ormiston W, Dyer-Hartnett S, Fernando R, et al. An update on vessel preparation in lower limb arterial intervention. CVIR Endovasc. 2020; 3(1): 86.
  18. Leick J, Rheude T, Denne M, et al. Comparison of long-term outcome in patients with calcified stenosis treated with intravascular lithotripsy or with modified balloon angioplasty: a propensity score-adjusted study. Front Cardiovasc Med. 2023; 10: 1185422.
  19. Inomata Y, Hanaoka Y, Koyama JI, et al. Endovascular revascularization with a Scoring balloon for carotid in-stent restenosis : case report and literature review. Clin Neuroradiol. 2021; 31(4): 1199–1204.
  20. Allali A, Abdel-Wahab M, Traboulsi H, et al. Impact of lesion preparation technique on side branch compromise in calcified coronary bifurcations: a subgroup analysis of the PREPARE-CALC trial. J Interv Cardiol. 2020; 2020: 9740938.
  21. Mizutani K, Hara M, Nakao K, et al. Association between debulking area of rotational atherectomy and platform revolution speed-Frequency domain optical coherence tomography analysis. Catheter Cardiovasc Interv. 2020; 95(1): E1–E7.
  22. Gorol LJ, Katedra I, Kardiologii OK, et al. Aterektomia rotacyjna — renesans metody. Choroby Serca i Naczyń. 2018; 15(1): 29–35.
  23. Dobrzycki S, Reczuch K, Legutko J, et al. Rotational atherectomy in everyday clinical practice. Association of Cardiovascular Interventions of the Polish Society of Cardiology (Asocjacja Interwencji Sercowo-Naczyniowych Polskiego Towarzystwa Kardiologicznego - AISN PTK): Expert opinion. Kardiol Pol. 2018; 76(11): 1576–1584.
  24. Rola P, Kulczycki JJ, Barycki M, et al. Comparison of orbital atherectomy and rotational atherectomy in calcified left main disease: short-term outcomes. J Clin Med. 2023; 12(12).
  25. Shlofmitz E, Jeremias A, Shlofmitz R, et al. Lesion preparation with orbital atherectomy. Interv Cardiol. 2019; 14(3): 169–173.
  26. Shlofmitz E, Shlofmitz R, Lee MS. Orbital atherectomy: a comprehensive review. Interv Cardiol Clin. 2019; 8(2): 161–171.
  27. Doshi R, Thakkar S, Patel K, et al. Short term outcomes of rotational atherectomy versus orbital atherectomy in patients undergoing complex percutaneous coronary intervention: a systematic review and meta-analysis. Scand Cardiovasc J. 2021; 55(3): 129–137.
  28. Brinton TJ, Ali ZA, Hill JM, et al. Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses. Circulation. 2019; 139(6): 834–836.
  29. Ali ZA, Nef H, Escaned J, et al. Safety and effectiveness of coronary intravascular lithotripsy for treatment of severely calcified coronary stenoses: the disrupt CAD II study. Circ Cardiovasc Interv. 2019; 12(10): e008434.
  30. Hill JM, Kereiakes DJ, Shlofmitz RA, et al. Disrupt CAD III Investigators. Intravascular lithotripsy for treatment of severely calcified coronary artery disease. J Am Coll Cardiol. 2020; 76(22): 2635–2646.
  31. Saito S, Yamazaki S, Takahashi A, et al. Disrupt CAD IV Investigators. Intravascular lithotripsy for vessel preparation in severely calcified coronary arteries prior to stent placement ― primary outcomes from the japanese disrupt CAD IV study. Circ J. 2021; 85(6): 826–833.
  32. Kereiakes D, Mario CDi, Riley R, et al. Intravascular lithotripsy for treatment of calcified coronary lesions. JACC Cardiovasc Interv. 2021; 14(12): 1337–1348.
  33. Ali ZA, Brinton TJ, Hill JM, et al. Optical coherence tomography characterization of coronary lithoplasty for treatment of calcified lesions: first description. JACC Cardiovasc Imaging. 2017; 10(8): 897–906.
  34. Karimi Galougahi K, Patel S, Shlofmitz RA, et al. Calcific plaque modification by acoustic shock waves: intravascular lithotripsy in coronary interventions. Circ Cardiovasc Interv. 2021; 14(1): e009354.
  35. Ali Z, Hill J, Saito S, et al. TCT-163 optical coherence tomography characterization of eccentric versus concentric calcium treated with shockwave intravascular lithotripsy: patient-level pooled analysis of the disrupt CAD OCT substudies. J Am Coll Cardiol. 2021; 78(19): B67–B68.
  36. Ali ZA, McEntegart M, Hill JM, et al. Intravascular lithotripsy for treatment of stent underexpansion secondary to severe coronary calcification. Eur Heart J. 2020; 41(3): 485–486.
  37. Salazar C, Escaned J, Tirado G, et al. Intravascular lithotripsy for recurrent restenosis caused by severe calcific neoatherosclerosis. EuroIntervention. 2020; 16(4): e351–e352.
  38. Ielasi A, Loffi M, De Blasio G, et al. "Rota-tripsy": a successful combined approach for the treatment of a long and heavily calcified coronary lesion. Cardiovasc Revasc Med. 2020; 21(11S): 152–154.
  39. Lee TJ, Wan Rahimi WF, Low MY, et al. Type E coronary artery dissection caused by intravascular lithotripsy balloon rupture; vessel anatomy and characteristics in a lithoplasty complication case as detailed by optical coherence tomography: a case report. Eur Heart J Case Rep. 2021; 5(12): ytab432.
  40. Wilson SJ, Spratt JC, Hill J, et al. Incidence of "shocktopics" and asynchronous cardiac pacing in patients undergoing coronary intravascular lithotripsy. EuroIntervention. 2020; 15(16): 1429–1435.
  41. Protty MB, Gallagher S, Farooq V, et al. Combined use of rotational and excimer lASER coronary atherectomy (RASER) during complex coronary angioplasty-An analysis of cases (2006-2016) from the British Cardiovascular Intervention Society database. Catheter Cardiovasc Interv. 2021; 97(7): E911–E918.
  42. Barbato E, Gallinoro E, Abdel-Wahab M, et al. Management strategies for heavily calcified coronary stenoses: an EAPCI clinical consensus statement in collaboration with the EURO4C-PCR group. Eur Heart J. 2023; 44(41): 4340–4356.