Tom 18, Nr 2 (2023)
Inne materiały uzgodnione z Redakcją
Opublikowany online: 2023-09-28
Patofizjologia zwapnień w tętnicach wieńcowych
Kardiol Inwazyjna 2023;18(2):81-85.
Streszczenie
Na tworzenie blaszek miażdżycowych w tętnicach wieńcowych wpływają czynniki mechaniczne związane z zaburzeniami przepływu krwi oraz czynniki uszkadzające tętnice wieńcowe, prowadząc do nieprawidłowego przekazywania sygnałów między komórkami, nieprawidłowego ich wzrostu i sekrecji oraz apoptozy. Zwapnienia blaszek miażdżycowych stwierdzane są u jednej trzeciej pacjentów z chorobą wieńcową, w szczególności z zaawansowaną postacią choroby. Zwapnienia mogą być umiejscowione w intimie oraz medii. Na powstawanie zwapnień w intimie wpływa podeszły wiek, nadciśnienie tętnicze, cukrzyca, dyslipidemia i nikotynizm. Proces tworzenia blaszek miażdżycowych zostaje zapoczątkowany w śródbłonku naczyń wieńcowych, obejmując akumulację lipidów w makrofagach, następnie ich apoptozę i prowadząc do powstania rdzenia nekrotycznego. Postępujące zwapnienie rdzenia nekrotycznego obejmuje powstawanie mikrozwapnień, które łączą się w większe konglomeraty. Mikrozwapnienia i zwapnienia punktowe stanowią aktywne zapalnie formy zwapnień, występujące częściej u pacjentów objawowych oraz są dodatnio skorelowane z ryzykiem pęknięcia blaszki. Natomiast zwapnienia w medii są głównie wynikiem wytrącania fosforanu wapnia i transformacji osteoblastycznej oraz są stwierdzane u pacjentów z zaawansowaną niewydolnością nerek. Zwapnienia o większych rozmiarach mogą stabilizować blaszkę miażdżycową.
Słowa kluczowe: miażdżycachoroba wieńcowazwapnienia blaszek miażdżycowych
Referencje
- World Health Organization. Cardiovascular diseases (CVDs) Fact Sheet. 2017.
- Benjamin EJ, Blaha MJ, Chiuve SE, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017; 135(10): e146–e603.
- Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017; 38(32): 2459–2472.
- Nordestgaard BG, Chapman MJ, Humphries SE, et al. European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013; 34(45): 3478–90a.
- Nordestgaard BG, Chapman MJ, Humphries SE, et al. European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013; 34(45): 3478–90a.
- Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017; 13(6): 368–380.
- Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019; 5(1): 56.
- Nus M, Mallat Z. Immune-mediated mechanisms of atherosclerosis and implications for the clinic. Expert Rev Clin Immunol. 2016; 12(11): 1217–1237.
- Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol. 1995; 147(2): 251–266.
- Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013; 368(21): 2004–2013.
- Ruiz JL, Hutcheson JD, Aikawa E. Cardiovascular calcification: current controversies and novel concepts. Cardiovasc Pathol. 2015; 24(4): 207–212.
- Peled M, Fisher EA. Dynamic Aspects of Macrophage Polarization during Atherosclerosis Progression and Regression. Front Immunol. 2014; 5: 579.
- Stöger JL, Gijbels MJJ, van der Velden S, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012; 225(2): 461–468.
- Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res. 2010; 107(7): 839–850.
- Saito A, Ochiai K, Kondo S, et al. Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem. 2011; 286(6): 4809–4818.
- Reith S, Milzi A, Dettori R, et al. Predictors for target lesion microcalcifications in patients with stable coronary artery disease: an optical coherence tomography study. Clin Res Cardiol. 2018; 107(9): 763–771.
- Otsuka F, Sakakura K, Yahagi K, et al. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014; 34(4): 724–736.
- Nadra I, Mason JC, Philippidis P, et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ Res. 2005; 96(12): 1248–1256.
- Vesey AT, Jenkins WSA, Irkle A, et al. F-Fluoride and F-Fluorodeoxyglucose Positron Emission Tomography After Transient Ischemic Attack or Minor Ischemic Stroke: Case-Control Study. Circ Cardiovasc Imaging. 2017; 10(3): e004976.
- Kataoka Yu, Wolski K, Uno K, et al. Spotty calcification as a marker of accelerated progression of coronary atherosclerosis: insights from serial intravascular ultrasound. J Am Coll Cardiol. 2012; 59(18): 1592–1597.
- Kataoka Yu, Puri R, Hammadah M, et al. Spotty calcification and plaque vulnerability in vivo: frequency-domain optical coherence tomography analysis. Cardiovasc Diagn Ther. 2014; 4(6): 460–469.
- Sakaguchi M, Hasegawa T, Ehara S, et al. New insights into spotty calcification and plaque rupture in acute coronary syndrome: an optical coherence tomography study. Heart Vessels. 2016; 31(12): 1915–1922.
- Pu J, Zhang P, Guo J, et al. TCTAP A-165 Calcification Pattern and Plaque Vulnerability: Lessons from In-Vivo and In-Vitro Multimodality Intracoronary Imaging Studies. Journal of the American College of Cardiology. 2016; 67(16): S73.
- Bluestein D, Alemu Y, Avrahami I, et al. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech. 2008; 41(5): 1111–1118.
- Shi X, Gao J, Lv Q, et al. Calcification in Atherosclerotic Plaque Vulnerability: Friend or Foe? Front Physiol. 2020; 11: 56.
- Radcliff K, Tang TB, Lim J, et al. Insulin-like growth factor-I regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways. Circ Res. 2005; 96(4): 398–400.
- Komori T, Tanaka M, Senba E, et al. Lack of oncostatin M receptor β leads to adipose tissue inflammation and insulin resistance by switching macrophage phenotype. J Biol Chem. 2013; 288(30): 21861–21875.
- Kakutani Y, Shioi A, Shoji T, et al. Oncostatin M Promotes Osteoblastic Differentiation of Human Vascular Smooth Muscle Cells Through JAK3-STAT3 Pathway. J Cell Biochem. 2015; 116(7): 1325–1333.
- Joshi NV, Vesey A, Newby DE, et al. Will 18F-sodium fluoride PET-CT imaging be the magic bullet for identifying vulnerable coronary atherosclerotic plaques? Curr Cardiol Rep. 2014; 16(9): 521.
- Mintz GS, Popma JJ, Pichard AD, et al. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation. 1995; 91(7): 1959–1965.
- Nelson AJ, Raggi P, Wolf M, et al. Targeting Vascular Calcification in Chronic Kidney Disease. JACC Basic Transl Sci. 2020; 5(4): 398–412.
- Voelkl J, Lang F, Eckardt KU, et al. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cell Mol Life Sci. 2019; 76(11): 2077–2091.
- Alam Mu, Kirton JP, Wilkinson FL, et al. Calcification is associated with loss of functional calcium-sensing receptor in vascular smooth muscle cells. Cardiovasc Res. 2009; 81(2): 260–268.
- Li Q, van de Wetering K, Uitto J. Pseudoxanthoma Elasticum as a Paradigm of Heritable Ectopic Mineralization Disorders: Pathomechanisms and Treatment Development. Am J Pathol. 2019; 189(2): 216–225.
- Ngai D, Lino M, Rothenberg KE, et al. DDR1 (Discoidin Domain Receptor-1)-RhoA (Ras Homolog Family Member A) Axis Senses Matrix Stiffness to Promote Vascular Calcification. Arterioscler Thromb Vasc Biol. 2020; 40(7): 1763–1776.
- Louvet L, Büchel J, Steppan S, et al. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells. Nephrol Dial Transplant. 2013; 28(4): 869–878.
- Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987; 316(22): 1371–1375.
- Fok PW, Lanzer P. Media sclerosis drives and localizes atherosclerosis in peripheral arteries. PLoS One. 2018; 13(10): e0205599.
- Chatzizisis YS, Coskun AU, Jonas M, et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007; 49(25): 2379–2393.
- Xu X, Ju H, Cai J, et al. High-resolution MR study of the relationship between superficial calcification and the stability of carotid atherosclerotic plaque. Int J Cardiovasc Imaging. 2010; 26 Suppl 1: 143–150.
- Li ZY, Howarth S, Tang T, et al. Does calcium deposition play a role in the stability of atheroma? Location may be the key. Cerebrovasc Dis. 2007; 24(5): 452–459.
- Gössl M, Versari D, Hildebrandt HA, et al. Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis. JACC Cardiovasc Imaging. 2010; 3(1): 32–40.