Tom 17, Nr 1 (2022)
Inne materiały uzgodnione z Redakcją
Opublikowany online: 2022-06-15
Wyświetlenia strony 1851
Wyświetlenia/pobrania artykułu 21
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Globalne odkształcenie podłużne — nowe wyzwania, nowe możliwości w diagnostyce kardiologicznej

Agata Niedźwiedzka1, Agnieszka Pawlak12
Kardiol Inwazyjna 2022;17(1):3-7.

Streszczenie

Wraz z rozwojem medycyny poszukujemy nowych technik, które pozwolą na wcześniejsze wykrycie czynników ryzyka, postawienie diagnozy, a co za tym idzie — jak najszybsze wdrożenie leczenia. Globalne odkształcenie podłużne (GLS) może okazać się cennym narzędziem wykrywającym już niewielkie dysfunkcje mięśnia lewej komory. Czułość badania, jego dostępność i niskie koszty przemawiają za ogromnym potencjałem wykorzystania GLS w codziennej praktyce. Celem niniejszej pracy jest przedstawienie wyzwań oraz możliwości związanych z parametrem GLS w diagnostyce kardiologicznej.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Zhang K, Sheu R, Zimmerman NM, et al. A Comparison of Global Longitudinal, Circumferential, and Radial Strain to Predict Outcomes After Cardiac Surgery. J Cardiothorac Vasc Anesth. 2019; 33(5): 1315–1322.
  2. Joseph G, Zaremba T, Johansen MB, et al. Echocardiographic global longitudinal strain is associated with infarct size assessed by cardiac magnetic resonance in acute myocardial infarction. Echo Res Pract. 2019; 6(4): 81–89.
  3. Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011; 24(3): 277–313.
  4. Kraigher-Krainer E, Shah AM, Gupta DK, et al. PARAMOUNT Investigators. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014; 63(5): 447–456.
  5. Galderisi M, Cosyns B, Edvardsen T, et al. 2016–2018 EACVI Scientific Documents Committee, 2016–2018 EACVI Scientific Documents Committee. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017; 18(12): 1301–1310.
  6. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16(3): 233–270.
  7. Collier P, Phelan D, Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. J Am Coll Cardiol. 2017; 69(8): 1043–1056.
  8. Tsugu T, Postolache A, Dulgheru R, et al. Echocardiographic reference ranges for normal left ventricular layer-specific strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2020; 21(8): 896–905.
  9. Maimaituxun G, Kusunose K, Yamada H, et al. Deleterious Effects of Epicardial Adipose Tissue Volume on Global Longitudinal Strain in Patients With Preserved Left Ventricular Ejection Fraction. Front Cardiovasc Med. 2020; 7: 607825.
  10. Appadurai V, D'Elia N, Mew T, et al. Global longitudinal strain as a prognostic marker in cardiac resynchronisation therapy: A systematic review. Int J Cardiol Heart Vasc. 2021; 35: 100849.
  11. Oikonomou EK, Kokkinidis DG, Kampaktsis PN, et al. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis. JAMA Cardiol. 2019; 4(10): 1007–1018.
  12. Otani K, Higa Y, Kitano T, et al. Prediction of cardiac events using fully automated GLS and BNP titers in patients with known or suspected heart failure. PLoS One. 2020; 15(6): e0234294.
  13. Stokke TM, Hasselberg NE, Smedsrud MK, et al. Geometry as a confounder when assessing ventricular systolic function: comparison between ejection fraction and strain. J Am Coll Cardiol. 2017; 70(8): 942–954.
  14. Nucifora G, Schuijf JD, Delgado V, et al. Incremental value of subclinical left ventricular systolic dysfunction for the identification of patients with obstructive coronary artery disease. Am Heart J. 2010; 159(1): 148–157.
  15. Mollema SA, Delgado V, Bertini M, et al. Viability assessment with global left ventricular longitudinal strain predicts recovery of left ventricular function after acute myocardial infarction. Circ Cardiovasc Imaging. 2010; 3(1): 15–23.
  16. Ersbøll M, Valeur N, Mogensen UM, et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2013; 61(23): 2365–2373.
  17. Meindl C, Paulus M, Poschenrieder F, et al. Patients with acute myocarditis and preserved systolic left ventricular function: comparison of global and regional longitudinal strain imaging by echocardiography with quantification of late gadolinium enhancement by CMR. Clin Res Cardiol. 2021; 110(11): 1792–1800.
  18. Doimo S, Ricci F, Aung N, et al. Tissue-tracking in the assessment of late gadolinium enhancement in myocarditis and myocardial infarction. Magn Reson Imaging. 2020; 73: 62–69.
  19. Degiovanni A, Pastore MC, Spinoni EG, et al. Usefulness of a multiparametric evaluation including global longitudinal strain for an early diagnosis of acute myocarditis. Int J Cardiovasc Imaging. 2021; 37(11): 3203–3211.
  20. Sperlongano S, D'Amato A, Tagliamonte E, et al. Acute myocarditis: prognostic role of speckle tracking echocardiography and comparison with cardiac magnetic resonance features. Heart Vessels. 2022; 37(1): 121–131.
  21. Niemelä J, Ylänen K, Suominen A, et al. Cardiac function after cardiotoxic treatments for childhood cancer-left ventricular longitudinal strain in screening. Front Cardiovasc Med. 2021; 8: 715953.
  22. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, et al. ESC Scientific Document Group. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines:  The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016; 37(36): 2768–2801.
  23. Kažukauskienė I, Balčiūnaitė G, Baltrūnienė V, et al. Left ventricular global longitudinal strain predicts elevated cardiac pressures and poor clinical outcomes in patients with non-ischemic dilated cardiomyopathy. Cardiovasc Ultrasound. 2021; 19(1): 21.
  24. Sanfilippo F, Corredor C, Fletcher N, et al. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis. Crit Care. 2018; 22(1): 183.
  25. Liu D, Hu K, Nordbeck P, et al. Longitudinal strain bull's eye plot patterns in patients with cardiomyopathy and concentric left ventricular hypertrophy. Eur J Med Res. 2016; 21(1): 21.
  26. Farsalinos KE, Daraban AM, Ünlü S, et al. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr. 2015; 28(10): 1171–1181, e2.
  27. Edvardsen T, Haugaa KH. Strain echocardiography: from variability to predictability. JACC Cardiovasc Imaging. 2018; 11(1): 35–37.