Tom 16, Nr 1 (2021)
Inne materiały uzgodnione z Redakcją
Opublikowany online: 2021-07-27

dostęp otwarty

Wyświetlenia strony 4101
Wyświetlenia/pobrania artykułu 72
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Zdarzenia zakrzepowo- -zatorowe w przebiegu choroby COVID-19. Częstość występowania, patomechanizm, profilaktyka i leczenie

Anna Matrejek1, Alicia del Carmen Yika1, Gabriela Kanclerz1, Adam Stępień1, Patrycja Furczyńska1, Karol Nowak1, Konrad Stępień1, Jadwiga Nessler1, Jarosław Zalewski1
Kardiol Inwazyjna 2021;16(1):18-29.

Streszczenie

Pandemia COVID-19 wywołała ogólnoświatowe trudności
w funkcjonowaniu systemów ochrony zdrowia. Choroba ta,
dotykająca coraz większej liczby osób na świecie, nie dotyczy
jedynie, jak początkowo sądzono, układu oddechowego.
Powoduje bowiem wiele powikłań wieloukładowych, w tym
incydenty zakrzepowo-zatorowe. Zakażenie SARS-CoV-2 wywołuje
wiele zaburzeń w układzie krzepnięcia, które znacząco
zwiększają ryzyko formowania zakrzepu. Wyniki badań wskazują
na wyższą częstość występowania zakrzepicy żył głębokich,
udaru mózgu, zatorów tętnic kończyn oraz zatorowości płucnej
u chorych na COVID-19, które pogarszają rokowanie pacjentów
z SARS-CoV-2. U zakażonych częściej dochodzi również do
incydentów wieńcowych, a przezskórna interwencja wieńcowa
wiąże się z istotnie wyższym ryzykiem zakrzepicy w stencie.
Co ważne, incydenty mają miejsce pomimo stosowanych profilaktycznych
dawek heparyny drobnocząsteczkowej. Pomimo
niepełnego zapobiegania incydentom zakrzepowo-zatorowym,
stosowanie leków przeciwzakrzepowych w postaci heparyn jako
profilaktyki u pacjentów hospitalizowanych z powodu zakażenia
COVID-19 jest zalecane, szczególnie u tych w ciężkim stanie
oraz z wysokim ryzykiem zakrzepowo-zatorowym. Zdarzenia
zakrzepowo-zatorowe incydentalnie towarzyszą również podaniu
szczepionki przeciwko COVID-19.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). 2021 Apr 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls publishing; 2021 Jan–. PMID: 32150360.
  2. Bilaloglu S, Aphinyanaphongs Y, Jones S, et al. Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System. JAMA. 2020; 324(8): 799–801.
  3. Klok FA, Kruip MJ, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res. 2020; 191: 148–150.
  4. Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020; 251(3): 228–248.
  5. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417–1418.
  6. Ward SE, Curley GF, Lavin M, et al. Irish COVID-19 Vasculopathy Study (ICVS) Investigators. Von Willebrand factor propeptide in severe coronavirus disease 2019 (COVID-19): evidence of acute and sustained endothelial cell activation. Br J Haematol. 2021; 192(4): 714–719.
  7. Mancini I, Baronciani L, Artoni A, et al. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J Thromb Haemost. 2021; 19(2): 513–521.
  8. Verdecchia P, Cavallini C, Spanevello A, et al. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020; 76: 14–20.
  9. Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021 [Epub ahead of print].
  10. Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7(6): e438–e440.
  11. Iba T, Warkentin TE, Thachil J, et al. Proposal of the Definition for COVID-19-Associated Coagulopathy. J Clin Med. 2021; 10(2).
  12. Maier CL, Truong AD, Auld SC, et al. COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia? Lancet. 2020; 395(10239): 1758–1759.
  13. Pendu JLe, Breiman A, Rocher J, et al. ABO Blood Types and COVID-19: Spurious, Anecdotal, or Truly Important Relationships? A Reasoned Review of Available Data. Viruses. 2021; 13(2).
  14. Zhang R, Ni L, Di X, et al. Systematic review and meta-analysis of the prevalence of venous thromboembolic events in novel coronavirus disease-2019 patients. J Vasc Surg Venous Lymphat Disord. 2021; 9(2): 289–298.e5.
  15. Mai V, Tan BK, Mainbourg S, et al. Venous thromboembolism in COVID-19 compared to non-COVID-19 cohorts: A systematic review with meta-analysis. Vascul Pharmacol. 2021 [Epub ahead of print]: 106882.
  16. Roubinian NH, Dusendang JR, Mark DG, et al. Incidence of 30-Day Venous Thromboembolism in Adults Tested for SARS-CoV-2 Infection in an Integrated Health Care System in Northern California. JAMA Intern Med. 2021 [Epub ahead of print].
  17. Minet C, Potton L, Bonadona A, et al. Venous thromboembolism in the ICU: main characteristics, diagnosis and thromboprophylaxis. Crit Care. 2015; 19: 287.
  18. Li JY, Wang HF, Yin P, et al. Thrombo-COVID-19 Collaborative. Clinical characteristics and risk factors for symptomatic venous thromboembolism in hospitalized COVID-19 patients: A multicenter retrospective study. J Thromb Haemost. 2021; 19(4): 1038–1048.
  19. Zhang Li, Feng X, Zhang D, et al. Deep Vein Thrombosis in Hospitalized Patients With COVID-19 in Wuhan, China: Prevalence, Risk Factors, and Outcome. Circulation. 2020; 142(2): 114–128.
  20. Chen S, Zhang D, Zheng T, et al. DVT incidence and risk factors in critically ill patients with COVID-19. J Thromb Thrombolysis. 2021; 51(1): 33–39.
  21. Soumagne T, Lascarrou JB, Hraiech S, et al. Factors Associated With Pulmonary Embolism Among Coronavirus Disease 2019 Acute Respiratory Distress Syndrome: A Multicenter Study Among 375 Patients. Crit Care Explor. 2020; 2(7): e0166.
  22. Marra A, Zanardi F, Marchetti M, et al. Stratifying pulmonary embolism risk in COVID-19 pneumonia in the Emergency Department: the Bergamo Emergency Room pulmonary embolism risk in COVID-19 score - a pilot study. Eur J Emerg Med. 2021; 28(2): 158–161.
  23. Horiuchi H, Morishita E, Urano T, et al. Questionnaire-survey Joint Team on The COVID-19-related thrombosis. COVID-19-Related Thrombosis in Japan: Final Report of a Questionnaire-Based Survey in 2020. J Atheroscler Thromb. 2021; 28(4): 406–416.
  24. Shahjouei S, Tsivgoulis G, Farahmand G, et al. SARS-CoV-2 and Stroke Characteristics: A Report From the Multinational COVID-19 Stroke Study Group. Stroke. 2021; 52(5): e117–e130.
  25. Siow I, Lee KS, Zhang JJY, et al. Stroke as a Neurological Complication of COVID-19: A Systematic Review and Meta-Analysis of Incidence, Outcomes and Predictors. J Stroke Cerebrovasc Dis. 2021; 30(3): 105549.
  26. Qureshi AI, Baskett WI, Huang W, et al. Acute Ischemic Stroke and COVID-19: An Analysis of 27 676 Patients. Stroke. 2021; 52(3): 905–912.
  27. Tan YK, Goh C, Leow AST, et al. COVID-19 and ischemic stroke: a systematic review and meta-summary of the literature. J Thromb Thrombolysis. 2020; 50(3): 587–595.
  28. Shi S, Qin Mu, Shen Bo, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020; 5(7): 802–810.
  29. Pellegrini D, Kawakami R, Guagliumi G, et al. Microthrombi as a Major Cause of Cardiac Injury in COVID-19: A Pathologic Study. Circulation. 2021; 143(10): 1031–1042.
  30. Hamadeh A, Aldujeli A, Briedis K, et al. Characteristics and Outcomes in Patients Presenting With COVID-19 and ST-Segment Elevation Myocardial Infarction. Am J Cardiol. 2020; 131: 1–6.
  31. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844–847.
  32. Bellosta R, Luzzani L, Natalini G, et al. Acute limb ischemia in patients with COVID-19 pneumonia. J Vasc Surg. 2020; 72(6): 1864–1872.
  33. Goldman IA, Ye K, Scheinfeld MH. Lower-extremity Arterial Thrombosis Associated with COVID-19 Is Characterized by Greater Thrombus Burden and Increased Rate of Amputation and Death. Radiology. 2020; 297(2): E263–E269.
  34. Sánchez JB, Cuipal Alcalde JD, Ramos Isidro R, et al. Acute Limb Ischemia in a Peruvian Cohort Infected by COVID-19. Ann Vasc Surg. 2021; 72: 196–204.
  35. Carfora V, Spiniello G, Ricciolino R, et al. Vanvitelli COVID-19 group. Anticoagulant treatment in COVID-19: a narrative review. J Thromb Thrombolysis. 2021; 51(3): 642–648.
  36. Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 18(5): 1094–1099.
  37. Li J, Li Y, Yang B, et al. Low-molecular-weight heparin treatment for acute lung injury/acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. Int J Clin Exp Med. 2018; 11(2): 414–422.
  38. Shi C, Wang C, Wang H, et al. The Potential of Low Molecular Weight Heparin to Mitigate Cytokine Storm in Severe COVID-19 Patients: A Retrospective Cohort Study. Clin Transl Sci. 2020; 13(6): 1087–1095.
  39. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020; 18(5): 1023–1026.
  40. STANOWISKO Nr 3 FORUM NAUKOWEGO COVID-19 NACZELNEJ IZBY LEKARSKIEJ z dnia 20 marca 2021 r. w sprawie tromboprofilaktyki w COVID-19. Tromboprofilaktyka i leczenie przeciwkrzepliwe u dorosłych chorych hospitalizowanych z powodu COVID-19.
  41. Capell WH, Barnathan ES, Piazza G, et al. Rationale and design for the study of rivaroxaban to reduce thrombotic events, hospitalization and death in outpatients with COVID-19: The PREVENT-HD study. Am Heart J. 2021; 235: 12–23.
  42. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. https://www.covid19treatmentguidelines.nih.gov/ (22.05.2021).
  43. Hasan SS, Radford S, Kow CS, et al. Venous thromboembolism in critically ill COVID-19 patients receiving prophylactic or therapeutic anticoagulation: a systematic review and meta-analysis. J Thromb Thrombolysis. 2020; 50(4): 814–821.
  44. Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020; 18(7): 1743–1746.
  45. Pavoni V, Gianesello L, Pazzi M, Dattolo P, Prisco D. Questions about COVID-19 associated coagulopathy: possible answers from the viscoelastic tests. Journal of Thrombosis and Thrombolysis, THRO-D-21-00321.
  46. Cohen AT, Harrington RA, Goldhaber SZ, et al. APEX Investigators. Extended Thromboprophylaxis with Betrixaban in Acutely Ill Medical Patients. N Engl J Med. 2016; 375(6): 534–544.
  47. Aryal MR, Gosain R, Donato A, et al. Venous Thromboembolism in COVID-19: Towards an Ideal Approach to Thromboprophylaxis, Screening, and Treatment. Curr Cardiol Rep. 2020; 22(7): 52.
  48. McGonagle D, De Marco G, Bridgewood C. Mechanisms of Immunothrombosis in Vaccine-Induced Thrombotic Thrombocytopenia (VITT) Compared to Natural SARS-CoV-2 Infection. J Autoimmun. 2021; 121: 102662.
  49. Scully M, Singh D, Lown R, et al. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N Engl J Med. 2021; 384(23): 2202–2211.
  50. Franchini M, Liumbruno GM, Pezzo M. COVID-19 vaccine-associated immune thrombosis and thrombocytopenia (VITT): Diagnostic and therapeutic recommendations for a new syndrome. Eur J Haematol. 2021 [Epub ahead of print].