Tom 15, Nr 1 (2020)
KARDIOLOGIA EKSPERYMENTALNA
Opublikowany online: 2020-06-30

dostęp otwarty

Wyświetlenia strony 673
Wyświetlenia/pobrania artykułu 263
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Rola hipotermii w leczeniu zawału serca – stan wiedzy

Tomasz Kameczura1, Marek Rajzer2, Piotr Buszman34, Sebastian Stec5, Jerzy Wiliński6, Rafał Januszek78, Michał Zabojszcz9
Kardiol Inwazyjna 2020;15(1):16-20.

Streszczenie

Zawał serca jest spowodowany ciężkim i długotrwałym niedokrwieniem mięśnia sercowego, które prowadzi do martwicy i przebudowy mięśnia sercowego, a w konsekwencji może doprowadzić do niewydolności serca. Tradycyjne postępowanie w ostrym zawale serca obejmuje terapię farmakologiczną (w tym fibrynolizę), przezskórne interwencje wieńcowe i pomostowanie aortalno-wieńcowe. Wciąż trwa poszukiwane nowych strategii postępowania w ostrym zawale serca mogących ograniczyć uszkodzenie lewej komory i poprawiających rokowanie.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Cai M, Shen R, Song L, et al. Bone Marrow Mesenchymal Stem Cells (BM-MSCs) Improve Heart Function in Swine Myocardial Infarction Model through Paracrine Effects. Sci Rep. 2016; 6: 28250.
  2. Chen X, Lu M, Ma N, et al. Dynamic Tracking of Injected Mesenchymal Stem Cells after Myocardial Infarction in Rats: A Serial 7T MRI Study. Stem Cells Int. 2016; 2016: 4656539.
  3. Brickwedel J, Gulbins H, Reichenspurner H. Long-term follow-up after autologous skeletal myoblast transplantation in ischaemic heart disease. Interact Cardiovasc Thorac Surg. 2014; 18(1): 61–66.
  4. Choudry F, Hamshere S, Saunders N, et al. A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trial†. Eur Heart J. 2016; 37(3): 256–263.
  5. Chong JJH, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014; 510(7504): 273–277.
  6. Shiba Y, Fernandes S, Zhu WZ, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012; 489(7415): 322–325.
  7. Reddy P, Arora M, Guimond M, et al. GVHD: a continuing barrier to the safety of allogeneic transplantation. Biol Blood Marrow Transplant. 2009; 15(1 Suppl): 162–168.
  8. Blin G, Nury D, Stefanovic S, et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest. 2010; 120(4): 1125–1139.
  9. Matsu-ura T, Sasaki H, Okada M, et al. Attenuation of teratoma formation by p27 overexpression in induced pluripotent stem cells. Stem Cell Res Ther. 2016; 7: 30.
  10. Mousavinejad M, Andrews PW, Shoraki EK. Current Biosafety Considerations in Stem Cell Therapy. Cell J. 2016; 18(2): 281–287.
  11. Sirmenis R, Kraniauskas A, Jarašienė R, et al. Recovery of infarcted myocardium in an in vivo experiment. Medicina (Kaunas). 2011; 47(11): 607–615.
  12. Ciecierska A, Chodkowska K, Motyl T, et al. Myogenic cells applications in regeneration of post-infarction cardiac tissue. J Physiol Pharmacol. 2013; 64(4): 401–408.
  13. Rangappa S, Makkar R, Forrester J. Review article: current status of myocardial regeneration: new cell sources and new strategies. J Cardiovasc Pharmacol Ther. 2010; 15(4): 338–343.
  14. Berry MF, Engler AJ, Woo YJ, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol. 2006; 290(6): H2196–H2203.
  15. Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther. 2016; 7(1): 82.
  16. Liu Yu, Chen Li, Diaz AD, et al. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts. Sci Rep. 2016; 6: 31457.
  17. Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005; 433(7026): 647–653.
  18. Uchida S, De Gaspari P, Kostin S, et al. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports. 2013; 1(5): 397–410.
  19. Hensley MT, de Andrade J, Keene B, et al. Cardiac regenerative potential of cardiosphere-derived cells from adult dog hearts. J Cell Mol Med. 2015; 19(8): 1805–1813.
  20. Suzuki E, Fujita D, Takahashi M, et al. Stem cell-derived exosomes as a therapeutic tool for cardiovascular disease. World J Stem Cells. 2016; 8(9): 297–305.
  21. Feng Y, Huang W, Wani M, et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One. 2014; 9(2): e88685.
  22. Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res. 2014; 103(4): 530–541.
  23. Parra-Flores P, Riquelme JA, Valenzuela-Bustamante P, et al. The Association of Ascorbic Acid, Deferoxamine and N-Acetylcysteine Improves Cardiac Fibroblast Viability and Cellular Function Associated with Tissue Repair Damaged by Simulated Ischemia/Reperfusion. Antioxidants (Basel). 2019; 8(12).
  24. Boarescu PM, Boarescu I, Bocșan IC, et al. Antioxidant and Anti-Inflammatory Effects of Curcumin Nanoparticles on Drug-Induced Acute Myocardial Infarction in Diabetic Rats. Antioxidants (Basel). 2019; 8(10).
  25. Benson DW, Williams GR, Spencer FC, et al. The use of hypothermia after cardiac arrest. Anesth Analg. 1959; 38: 423–428.
  26. Varon J, Acosta P. Therapeutic Hypothermia. Chest. 2008; 133(5): 1267–1274.
  27. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009; 37(7 Suppl): S186–S202.
  28. Steg PhG, James SK, Atar D, et al. Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC). ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012; 33(20): 2569–2619.
  29. Callaway CW, Donnino MW, Fink EL, et al. Part 8: Post-Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015; 132(18 Suppl 2): S465–S482.
  30. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002; 346(8): 549–556.
  31. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002; 346(8): 557–563.
  32. Hale SL, Kloner RA. Myocardial temperature in acute myocardial infarction: protection with mild regional hypothermia. Am J Physiol. 1997; 273(1 Pt 2): H220–H227.
  33. Sun F, Sánchez F, Crisóstomo V, et al. Subxiphoid Access to Normal Pericardium with Micropuncture Set: Technical Feasibility Study in Pigs. Radiology. 2006; 238(2): 719–724.