Tom 12, Nr 2 (2017)
UCZYMY SIĘ!
Opublikowany online: 2017-05-31

dostęp otwarty

Wyświetlenia strony 518
Wyświetlenia/pobrania artykułu 2724
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Kardioprotekcja — czy nie zapominamy o ochronie krążenia wieńcowego. Część 2 — znaczenie kliniczne

Martyna Zaleska1, Olga Możeńska1, Barbara Bober2, Jacek Bil2
Kardiol Inwazyjna 2017;12(2):3-8.

Streszczenie

Reperfuzja jest jedyną metodą pozwalającą na zachowanie żywotności miokardium w ostrej fazie zawału. Jednak niedługo po publikacji doniesień mówiących o skuteczności terapeutycznej takiego postępowania zaczęto podnosić temat uszkodzenia miokardium występującego również w trakcie reperfuzji, a nie tylko niedokrwienia. Od wielu lat prezentowane są prace oceniające wpływ różnych leków i interwencji mających na celu ochronę mięśnia sercowego w trakcie zarówno niedokrwienia, jak i reperfuzji. Jednak większość autorów skupia się zwykle na uszkodzeniu dotyczącym miokardium i metodach pozwalających na jego uniknięcie. Warto jednak pamiętać, że zmiany wywołanie niedokrwieniem i reperfuzją dotyczą również krążenia i mikrokrążenia wieńcowego, a zatem kardioprotekcja powinna obejmować również te ostatnie. W tej części artykułu przedstawiamy wyniki badań klinicznych i możliwości wykorzystania w praktyce klinicznej ochrony mikrokrążenia wieńcowego w trakcie niedokrwienia i reperfuzji.

Referencje

  1. Mortality, G.B.D. and C. Causes of Death, Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015. 385 (9963): p. : 117–71.
  2. Krug A, Korb G. Blood supply of the myocardium after temporary coronary occlusion. Circ Res. 1966; 19(1): 57–62.
  3. Kloner RA, Ganote CE, Jennings RB. The "no-reflow" phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974; 54(6): 1496–1508.
  4. Ginks WR, Sybers HD, Maroko PR, et al. Coronary artery reperfusion. II. Reduction of myocardial infarct size at 1 week after the coronary occlusion. J Clin Invest. 1972; 51(10): 2717–2723.
  5. Maroko PR, Libby P, Ginks WR, et al. Coronary artery reperfusion. I. Early effects on local myocardial function and the extent of myocardial necrosis. J Clin Invest. 1972; 51(10): 2710–2716.
  6. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007; 357(11): 1121–1135.
  7. Heusch G, Kleinbongard P, Skyschally A, et al. The coronary circulation in cardioprotection: more than just one confounder. Cardiovasc Res. 2012; 94(2): 237–245.
  8. Pepine, C.J., , Emergence of nonobstructive coronary artery disease: a woman’s problem and need for change in definition on angiography. Journal of the American College of Cardiology, 2015. 66(17): p. : 1918–1933.
  9. Zhao ZQ, Corvera J, Halkos M, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology. 2003; 285(2): H579–H588.
  10. Heusch G. The Coronary Circulation as a Target of Cardioprotection. Circ Res. 2016; 118(10): 1643–1658.
  11. Loke KE, Woodman OL. Preconditioning improves myocardial function and reflow, but not vasodilator reactivity, after ischaemia and reperfusion in anaesthetized dogs. Clin Exp Pharmacol Physiol. 1998; 25(7-8): 552–558.
  12. Bauer B, Simkhovich BZ, Kloner RA, et al. Does preconditioning protect the coronary vasculature from subsequent ischemia/reperfusion injury? Circulation. 1993; 88(2): 659–672.
  13. Richard V, Kaeffer N, Tron C, et al. Ischemic preconditioning protects against coronary endothelial dysfunction induced by ischemia and reperfusion. Circulation. 1994; 89(3): 1254–1261.
  14. Bouchard, J.-f. and D. Lamontagne, Mechanisms of protection afforded by preconditioning to endothelial function against ischemic injury. American Journal of Physiology-Heart and Circulatory Physiology, 1996. 271(5): p. : H1801–H1806.
  15. Bouchard JF, Chouinard J, Lamontagne D. Role of kinins in the endothelial protective effect of ischaemic preconditioning. Br J Pharmacol. 1998; 123(3): 413–420.
  16. Kurzelewski, M., , Effect of ischemic preconditioning on endothelial dysfunction and granulocyte adhesion in isolated guinea-pig hearts subjected to ischemia/reperfusion. Journal of physiology and pharmacology: an official journal of the Polish Physiological Society, 1999. 50(4): p. : 617–628.
  17. Merkus D, et al. Adenosine preconditions against endothelin-induced constriction of coronary arterioles. American Journal of Physiology-Heart and Circulatory Physiology. 2000; 279(6): H2593–H2597.
  18. Thourani V, Nakamura M, Duarte I, et al. Ischemic preconditioning attenuates postischemic coronary artery endothelial dysfunction in a model of minimally invasive direct coronary artery bypass grafting. The Journal of Thoracic and Cardiovascular Surgery. 1999; 117(2): 383–389.
  19. Gattullo D. Ischaemic preconditioning changes the pattern of coronary reactive hyperaemia in the goat: role of adenosine and nitric oxide. Cardiovascular Research. 1999; 42(1): 57–64.
  20. Tofukuji M, et al. Effects of ischemic preconditioning on myocardial perfusion, function, and microvascular regulation. Circulation. 1998; 98((19 Suppl)): II197–204; discussion II204-5.
  21. Matsuda N, Morgan K, Sellke F. Preconditioning improves cardioplegia-related coronary microvascular smooth muscle hypercontractility: Role of KATP channels. The Journal of Thoracic and Cardiovascular Surgery. 1999; 118(3): 438–445.
  22. Rezkalla SH, Kloner RA. Ischemic preconditioning and preinfarction angina in the clinical arena. Nat Clin Pract Cardiovasc Med. 2004; 1(2): 96–102.
  23. Niccoli G, Scalone G, Cosentino N, et al. Protective Effect of Pre-Infarction Angina on Microvascular Obstruction After Primary Percutaneous Coronary Intervention Is Blunted in Humans by Cardiovascular Risk Factors. Circulation Journal. 2014; 78(8): 1935–1941.
  24. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003; 285(2): H579–H588.
  25. Bodi V, Ruiz-Nodar J, Feliu E, et al. Effect of ischemic postconditioning on microvascular obstruction in reperfused myocardial infarction. Results of a randomized study in patients and of an experimental model in swine. International Journal of Cardiology. 2014; 175(1): 138–146.
  26. Hale SL, Mehra A, Leeka J, et al. Postconditioning fails to improve no reflow or alter infarct size in an open-chest rabbit model of myocardial ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2008; 294(1): H421–H425.
  27. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012; 162(1): 33–38.
  28. Heusch G. Reduction of infarct size by ischaemic post-conditioning in humans: fact or fiction? Eur Heart J. 2012; 33(1): 13–15.
  29. Cohen MV, Downey JM. Status of P2Y12 treatment must be considered in evaluation of myocardial ischaemia/reperfusion injury. Cardiovasc Res. 2015; 106(1): 8.
  30. Heusch G, Bøtker HE, Przyklenk K, et al. Remote ischemic conditioning. J Am Coll Cardiol. 2015; 65(2): 177–195.
  31. Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993; 87(3): 893–899.
  32. Bøtker H, Kharbanda R, Schmidt M, et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. The Lancet. 2010; 375(9716): 727–734.
  33. White SK, Frohlich GM, Sado DM, et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2015; 8(1 Pt B): 178–188.
  34. Pryds K, Bøttcher M, Sloth AD, et al. CONDI Investigators. Influence of preinfarction angina and coronary collateral blood flow on the efficacy of remote ischaemic conditioning in patients with ST segment elevation myocardial infarction: post hoc subgroup analysis of a randomised controlled trial. BMJ Open. 2016; 6(11): e013314.
  35. Heusch G. Cardioprotection: chances and challenges of its translation to the clinic. Lancet. 2013; 381(9861): 166–175.
  36. Heusch G, Libby P, Gersh B, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014; 383(9932): 1933–1943.
  37. Ferdinandy P, Hausenloy DJ, Heusch G, et al. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev. 2014; 66(4): 1142–1174.
  38. Behmenburg F, Heinen A, Bruch LV, et al. Cardioprotection by Remote Ischemic Preconditioning is Blocked in the Aged Rat Heart in Vivo. J Cardiothorac Vasc Anesth. 2016 [Epub ahead of print].
  39. Chen Y, Ba L, Huang W, et al. Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. Eur J Pharmacol. 2017; 796: 90–100.
  40. Garcia-Dorado, D., , Favorable effects of hyperosmotic reperfusion on myocardial edema and infarct size. American Journal of Physiology-Heart and Circulatory Physiology, 1992. 262(1): p. : H17–H22.
  41. Uitterdijk A, Yetgin T, te Lintel Hekkert M, et al. Vagal nerve stimulation started just prior to reperfusion limits infarct size and no-reflow. Basic Res Cardiol. 2015; 110(5): 508.
  42. Pierrakos CN, Bonios MJ, Drakos SG, et al. Mechanical assistance by intra-aortic balloon pump counterpulsation during reperfusion increases coronary blood flow and mitigates the no-reflow phenomenon: an experimental study. Artif Organs. 2011; 35(9): 867–874.
  43. Pantsios C, Kapelios C, Vakrou S, et al. Effect of Elevated Reperfusion Pressure on "No Reflow" Area and Infarct Size in a Porcine Model of Ischemia-Reperfusion. J Cardiovasc Pharmacol Ther. 2016; 21(4): 405–411.
  44. Zálešák, M., , Hyperosmotic environment blunts effectivity of ischemic preconditioning against ischemia-reperfusion injury and improves ischemic tolerance in non-preconditioned isolated rat hearts. Physiological research, 2016. 65(6): p. ; 1045.
  45. Herring MJ, Dai W, Hale SL, et al. Rapid Induction of Hypothermia by the ThermoSuit System Profoundly Reduces Infarct Size and Anatomic Zone of No Reflow Following Ischemia-Reperfusion in Rabbit and Rat Hearts. J Cardiovasc Pharmacol Ther. 2015; 20(2): 193–202.
  46. Hale SL, Herring MJ, Kloner RA. Delayed treatment with hypothermia protects against the no-reflow phenomenon despite failure to reduce infarct size. J Am Heart Assoc. 2013; 2(1): e004234.
  47. Dixon S, Nguyen T, O’Neill W, et al. Induction of mild systemic hypothermia with endovascular cooling during primary percutaneous coronary intervention for acute myocardial infarction. Journal of the American College of Cardiology. 2002; 40(11): 1928–1934.
  48. Patel MR, Smalling RW, Thiele H, et al. Intra-aortic balloon counterpulsation and infarct size in patients with acute anterior myocardial infarction without shock: the CRISP AMI randomized trial. JAMA. 2011; 306(12): 1329–1337.
  49. Cung TT, Morel O, Cayla G, et al. Cyclosporine before PCI in Patients with Acute Myocardial Infarction. N Engl J Med. 2015; 373(11): 1021–1031.
  50. Ottani F, Latini R, Staszewsky L, et al. CYCLE Investigators. Cyclosporine A in Reperfused Myocardial Infarction: The Multicenter, Controlled, Open-Label CYCLE Trial. J Am Coll Cardiol. 2016; 67(4): 365–374.
  51. Jones DA, Pellaton C, Velmurugan S, et al. Randomized phase 2 trial of intracoronary nitrite during acute myocardial infarction. Circ Res. 2015; 116(3): 437–447.
  52. Siddiqi N, Neil C, Bruce M, et al. NIAMI investigators. Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI). Eur Heart J. 2014; 35(19): 1255–1262.
  53. Thiele H, Schindler K, Friedenberger J, et al. Intracoronary Compared With Intravenous Bolus Abciximab Application in Patients With ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: The Randomized Leipzig Immediate Percutaneous Coronary Intervention Abciximab IV Versus IC in ST-Elevation Myocardial Infarction Trial. Circulation. 2008; 118(1): 49–57.
  54. Kitakaze M, Asakura M, Kim J, et al. J-WIND investigators. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet. 2007; 370(9597): 1483–1493.
  55. Er F, Dahlem KM, Nia AM, et al. Randomized Control of Sympathetic Drive With Continuous Intravenous Esmolol in Patients With Acute ST-Segment Elevation Myocardial Infarction: The BEtA-Blocker Therapy in Acute Myocardial Infarction (BEAT-AMI) Trial. JACC Cardiovasc Interv. 2016; 9(3): 231–240.
  56. Lønborg J, Vejlstrup N, Kelbæk H, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012; 33(12): 1491–1499.
  57. Ibanez B, Macaya C, Sanchez-Brunete V, et al. Effect of Early Metoprolol on Infarct Size in ST-Segment-Elevation Myocardial Infarction Patients Undergoing Primary Percutaneous Coronary Intervention: The Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction (METOCARD-CNIC) Trial. Circulation. 2013; 128(14): 1495–1503.
  58. Heusch G, Kleinbongard P, Skyschally A. Myocardial infarction and coronary microvascular obstruction: an intimate, but complicated relationship. Basic Res Cardiol. 2013; 108(6): 380.
  59. Kloner RA, Rude RE, Carlson N, et al. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation. 1980; 62(5): 945–952.
  60. Heusch G, Kleinbongard P, Böse D, et al. Coronary microembolization: from bedside to bench and back to bedside. Circulation. 2009; 120(18): 1822–1836.
  61. Hori M, Gotoh K, Kitakaze M, et al. Role of oxygen-derived free radicals in myocardial edema and ischemia in coronary microvascular embolization. Circulation. 1991; 84(2): 828–840.
  62. Guarini G, Kiyooka T, Ohanyan V, et al. Impaired coronary metabolic dilation in the metabolic syndrome is linked to mitochondrial dysfunction and mitochondrial DNA damage. Basic Res Cardiol. 2016; 111(3): 29.