Tom 19, Nr 3-4 (2024)
Inne materiały uzgodnione z Redakcją
Opublikowany online: 2025-03-27
Wyświetlenia strony 37
Wyświetlenia/pobrania artykułu 5
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Funkcjonalna diagnostyka mikrokrążenia w przewlekłym zespole wieńcowym bez istotnych zmian w tętnicach nasierdziowych

Aleksandra Karcińska1, Julia Czajkowska1, Julia Kościanek1, Hubert Mączka1, Aleksandra Stolarz1, Anna Pioskowik1, Maria Szwarkowska1, Jarosław Zalewski2
Kardiol Inwazyjna 2024;19(3-4):56-65.

Streszczenie

U ponad połowy pacjentów z przewlekłą dusznicą bolesną poddawanych planowej koronarografii stwierdza się brak istotnych zwężeń w tętnicach wieńcowych (ANOCA, angina with non-obstructive coronary arteries), natomiast u około ¼ z nich stwierdza się cechy niedokrwienia (INOCA, ischemia with non-obstructive coronary arteries). Głównymi przyczynami ANOCA/INOCA są dysfunkcja śródbłonka, upośledzona funkcja rozkurczowa, postać skurczowa ANOCA/INOCA lub ich kombinacje. Obecnie jedyną metodą diagnostyczną pozwalającą na zróżnicowanie endotypu ANOCA/INOCA jest inwazyjne czynnościowe badanie tętnic wieńcowych (ICFT, invasive coronary functional testing). ICFT to badanie, podczas którego wykonuje się ocenę rezerwy wieńcowej (CFR, coronary flow reserve), oporu naczyniowego (MVR, microvascular resistance) w spoczynku, a jeśli konieczne to także po dowieńcowym podaniu acetylocholiny w rosnącej dawce i na końcu adenozyny. Prawidłowe rozpoznanie i sklasyfikowanie endotypu ANOCA/INOCA jest kluczowe dla wprowadzenia dedykowanej terapii. W niniejszej pracy przedstawiono diagnostykę oraz postępowanie w przypadku podejrzenia ANOCA/INOCA ze szczególnym uwzględnieniem diagnostyki inwazyjnej tych zespołów.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Schumann CL, Mathew RC, Dean JHL, et al. Functional and Economic Impact of INOCA and Influence of Coronary Microvascular Dysfunction. JACC Cardiovasc Imaging. 2021; 14(7): 1369–1379.
  2. Taha YK, Dungan JR, Weaver MT, et al. Symptom Presentation among Women with Suspected Ischemia and No Obstructive Coronary Artery Disease (INOCA). J Clin Med. 2023; 12(18).
  3. Vrints C, Andreotti F, Koskinas KC, et al. ESC Scientific Document Group, ESC Scientific Document Group. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J. 2024; 45(36): 3415–3537.
  4. Chang A, Kang N, Chung J, et al. Evaluation of Ischemia with No Obstructive Coronary Arteries (INOCA) and Contemporary Applications of Cardiac Magnetic Resonance (CMR). Medicina (Kaunas). 2023; 59(9).
  5. Escobar C, Lara JG, Escaned J, et al. Diagnosis and treatment of patients with ANOCA. REC: interventional cardiology (English Edition). 2024.
  6. Abouelnour A, Gori T. Vasomotor Dysfunction in Patients with Ischemia and Non-Obstructive Coronary Artery Disease: Current Diagnostic and Therapeutic Strategies. Biomedicines. 2021; 9(12).
  7. Vegsundvåg J, Holte E, Wiseth R, et al. Coronary flow velocity reserve in the three main coronary arteries assessed with transthoracic Doppler: a comparative study with quantitative coronary angiography. J Am Soc Echocardiogr. 2011; 24(7): 758–767.
  8. Cortigiani L, Rigo F, Gherardi S, et al. Additional prognostic value of coronary flow reserve in diabetic and nondiabetic patients with negative dipyridamole stress echocardiography by wall motion criteria. J Am Coll Cardiol. 2007; 50(14): 1354–1361.
  9. Cortigiani L, Rigo F, Gherardi S, et al. Coronary flow reserve during dipyridamole stress echocardiography predicts mortality. JACC Cardiovasc Imaging. 2012; 5(11): 1079–1085.
  10. Cortigiani L, Rigo F, Bovenzi F, et al. The Prognostic Value of Coronary Flow Velocity Reserve in Two Coronary Arteries During Vasodilator Stress Echocardiography. J Am Soc Echocardiogr. 2019; 32(1): 81–91.
  11. Sicari R, Rigo F, Gherardi S, et al. The prognostic value of Doppler echocardiographic-derived coronary flow reserve is not affected by concomitant antiischemic therapy at the time of testing. Am Heart J. 2008; 156(3): 573–579.
  12. Meeder JG, Hartzema-Meijer MJ, Jansen TPJ, et al. Outpatient Management of Patients With Angina With No Obstructive Coronary Arteries: How to Come to a Proper Diagnosis and Therapy. Front Cardiovasc Med. 2021; 8: 716319.
  13. Thomson LEJ, Wei J, Agarwal M, et al. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction. A National Heart, Lung, and Blood Institute-sponsored study from the Women's Ischemia Syndrome Evaluation. Circ Cardiovasc Imaging. 2015; 8(4).
  14. Patel AR, Salerno M, Kwong RY, et al. Stress Cardiac Magnetic Resonance Myocardial Perfusion Imaging: JACC Review Topic of the Week. J Am Coll Cardiol. 2021; 78(16): 1655–1668.
  15. Feher A, Sinusas AJ. Quantitative Assessment of Coronary Microvascular Function: Dynamic Single-Photon Emission Computed Tomography, Positron Emission Tomography, Ultrasound, Computed Tomography, and Magnetic Resonance Imaging. Circ Cardiovasc Imaging. 2017; 10(8).
  16. Maddahi J, Packard RRS. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med. 2014; 44(5): 333–343.
  17. Kuruvilla S, Kramer CM. Coronary microvascular dysfunction in women: an overview of diagnostic strategies. Expert Rev Cardiovasc Ther. 2013; 11(11): 1515–1525.
  18. Bravo PE, Di Carli MF, Dorbala S. Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev. 2017; 22(4): 455–464.
  19. Gewirtz H. PET measurements of myocardial blood flow post myocardial infarction: Relationship to invasive and cardiac magnetic resonance studies and potential clinical applications. J Nucl Cardiol. 2017; 24(6): 1883–1892.
  20. AlBadri A, Bairey Merz CN, Johnson BD, et al. Impact of Abnormal Coronary Reactivity on Long-Term Clinical Outcomes in Women. J Am Coll Cardiol. 2019; 73(6): 684–693.
  21. Michelsen MM, Pena A, Mygind ND, et al. Coronary Flow Velocity Reserve Assessed by Transthoracic Doppler: The iPOWER Study: Factors Influencing Feasibility and Quality. J Am Soc Echocardiogr. 2016; 29(7): 709–716.
  22. Sara JD, Widmer RJ, Matsuzawa Y, et al. Prevalence of Coronary Microvascular Dysfunction Among Patients With Chest Pain and Nonobstructive Coronary Artery Disease. JACC Cardiovasc Interv. 2015; 8(11): 1445–1453.
  23. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999; 100(19): 1992–2002.
  24. Pompei G, Ganzorig N, Kotanidis CP, et al. Novel diagnostic approaches and management of coronary microvascular dysfunction. Am J Prev Cardiol. 2024; 19: 100712.
  25. Szolc P, Guzik B, Kołtowski Ł, et al. Heterogeneous and overlapping mechanisms of ischemia and nonobstructive coronary arteries: in-hospital results of the MOSAIC-COR registry. Pol Arch Intern Med. 2024; 134(9).
  26. Gargiulo G, Giacoppo D, Jolly SS, et al. Radial Trialists’ Collaboration. Effects on Mortality and Major Bleeding of Radial Versus Femoral Artery Access for Coronary Angiography or Percutaneous Coronary Intervention: Meta-Analysis of Individual Patient Data From 7 Multicenter Randomized Clinical Trials. Circulation. 2022; 146(18): 1329–1343.
  27. Matsuo H, Kawase Y, Kawamura I. FFR and iFR. Annals of Nuclear Cardiology. 2017; 3(1): 53–60.
  28. Götberg M, Christiansen EH, Gudmundsdottir IJ, et al. iFR-SWEDEHEART Investigators. Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI. N Engl J Med. 2017; 376(19): 1813–1823.
  29. Berntorp K, Rylance R, Yndigegn T, et al. Clinical Outcome of Revascularization Deferral With Instantaneous Wave-Free Ratio and Fractional Flow Reserve: A 5-Year Follow-Up Substudy From the iFR-SWEDEHEART Trial. J Am Heart Assoc. 2023; 12(3): e028423.
  30. Andersen BK, Sejr-Hansen M, Maillard L, et al. Quantitative flow ratio versus fractional flow reserve for coronary revascularisation guidance (FAVOR III Europe): a multicentre, randomised, non-inferiority trial. Lancet. 2024; 404(10465): 1835–1846.
  31. Williams RP, de Waard GA, De Silva K, et al. Doppler Versus Thermodilution-Derived Coronary Microvascular Resistance to Predict Coronary Microvascular Dysfunction in Patients With Acute Myocardial Infarction or Stable Angina Pectoris. Am J Cardiol. 2018; 121(1): 1–8.
  32. Travieso A, Jeronimo-Baza A, Faria D, et al. Invasive evaluation of coronary microvascular dysfunction. J Nucl Cardiol. 2022; 29(5): 2474–2486.
  33. Geng Y, Wu X, Liu H, et al. Index of microcirculatory resistance: state-of-the-art and potential applications in computational simulation of coronary artery disease. J Zhejiang Univ Sci B. 2022; 23(2): 123–140.
  34. Kunadian V, Chieffo A, Camici PG, et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. EuroIntervention. 2021; 16(13): 1049–1069.
  35. van de Hoef TP, Lee JM, Boerhout CKM, et al. Combined Assessment of FFR and CFR for Decision Making in Coronary Revascularization: From the Multicenter International ILIAS Registry. JACC Cardiovasc Interv. 2022; 15(10): 1047–1056.
  36. Sueda S, Kohno H, Fukuda H, et al. Induction of coronary artery spasm by two pharmacological agents: comparison between intracoronary injection of acetylcholine and ergonovine. Coron Artery Dis. 2003; 14(6): 451–457.
  37. Takahashi T, Samuels BA, Li W, et al. Microvascular Network. Safety of Provocative Testing With Intracoronary Acetylcholine and Implications for Standard Protocols. J Am Coll Cardiol. 2022; 79(24): 2367–2378.
  38. Nakayama M, Tanaka N, Sakoda K, et al. Papaverine-induced polymorphic ventricular tachycardia during coronary flow reserve study of patients with moderate coronary artery disease. Circ J. 2015; 79(3): 530–536.
  39. Knuuti J. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Russian Journal of Cardiology. 2020; 25(2): 119–180.
  40. Cevik E, Tas A, Demirtakan ZG, et al. Intracoronary electrocardiogram detects coronary microvascular dysfunction and ischemia in patients with no obstructive coronary arteries disease. Am Heart J. 2024; 270: 62–74.
  41. De Maria GL, Scarsini R, Shanmuganathan M, et al. Oxford Acute Myocardial Infarction (OXAMI) Study Investigators. Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction. Int J Cardiovasc Imaging. 2020; 36(8): 1395–1406.
  42. Mejía-Rentería H, Wang L, Chipayo-Gonzales D, et al. Angiography-derived assessment of coronary microcirculatory resistance in patients with suspected myocardial ischaemia and non-obstructive coronary arteries. EuroIntervention. 2023; 18(16): e1348–e1356.
  43. Smilowitz NR, Prasad M, Widmer RJ, et al. Microvascular Network (MVN). Comprehensive Management of ANOCA, Part 2-Program Development, Treatment, and Research Initiatives: JACC State-of-the-Art Review. J Am Coll Cardiol. 2023; 82(12): 1264–1279.