Tom 12, Nr 4 (2021)
Inne materiały uzgodnione z Redakcją
Opublikowany online: 2022-03-28
Wyświetlenia strony 1853
Wyświetlenia/pobrania artykułu 27
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Bioaktywne substancje diety wspomagające leczenie niedoczynności tarczycy

Marianna Bachanek1, Małgorzata Moszak
Forum Zaburzeń Metabolicznych 2021;12(4):171-184.

Streszczenie

Niedoczynność tarczycy jest jedną z najczęściej występujących chorób endokrynologicznych w społeczeństwie polskim, szczególnie wśród kobiet. Choroba wpływa negatywnie na samopoczucie i funkcjonowanie organizmu, ponieważ gruczoł tarczowy odpowiada za: metabolizm białek, tłuszczów i węglowodanów, tempo podstawowej przemiany materii, termogenezę, pracę układu sercowo-naczyniowego, centralnego układu nerwowego, a także funkcje seksualne. Mimo iż całkowite wyleczenie niedoczynności nie jest niemożliwe, to poprzez substytucję egzogennej tyroksyny, a także dbałość o prawidłową dietę, można doprowadzić do wyrównania stężenia hormonów tarczycy (TSH, T3 i T4), a co za tym idzie — do poprawy funkcjonowania gruczołu tarczowego. Celem niniejszej pracy jest przegląd dostępnych danych naukowych dotyczących wpływu bioaktywnych substancji diety na wspomaganie leczenia niedoczynności tarczycy. Wśród substancji omówionych w artykule znajdują się między innymi składniki mineralne takie jak: jod, cynk, selen, żelazo i magnez, witaminy (w tym witamina D3 i witaminy antyoksydacyjne) oraz wybrane substancje bioaktywne takie jak mioinozytol, metatonina czy związki znajdujące się w niektórych ziołach.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Krauss H, Sosnowski P. Podstawy fizjologii człowieka. Wydawnictwo Naukowe Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu, Poznań 2009.
  2. Dev N, Sankar J, Vinay MV. Functions of thyroid hormones. In: Imam SK, Hmad SI. ed. Thyroid Disorders. Springer International Publishing 2016.
  3. Chaker L, Bianco A, Jonklaas J, et al. Hypothyroidism. The Lancet. 2017; 390(10101): 1550–1562.
  4. Miśkiewicz P., Bednarczuk T.. Niedoczynność tarczycy. Medycyna Praktyczna. 2021. https://www.mp.pl/pacjent/niedoczynnosc-tarczycy (8.02.2022).
  5. The American Thyroid Association. Hypothyroidism. A booklet for patients and thier families. 2019.
  6. Pearce EN, Caldwell KL. Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status. Am J Clin Nutr. 2016; 104 Suppl 3: 898S–901S.
  7. Carlé A, Laurberg P, Pedersen IB, et al. Epidemiology of subtypes of hypothyroidism in Denmark. Eur J Endocrinol. 2006; 154(1): 21–28.
  8. Aghini Lombardi F, Fiore E, Tonacchera M, et al. The effect of voluntary iodine prophylaxis in a small rural community: the pescopagano survey 15 years later. J Clin Endocrinol Metab. 2013; 98(3): 1031–1039.
  9. Li N, Jiang Y, Shan Z, et al. Prolonged high iodine intake is associated with inhibition of type 2 deiodinase activity in pituitary and elevation of serum thyrotropin levels. Br J Nutr. 2012; 107(5): 674–682.
  10. Jarosza M, Rychlik E, Stoś K, Charzewska J. Normy żywienia dla populacji Polski i ich zastosowanie. Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny, Warszawa 2020: Warszawa.
  11. World Health Organization. Regional Office for Europe. Country profiles on nutrition, physical activity and obesity in the 53 WHO European Region Member States: methodology and summary (2013). https://www.euro.who.int/en/publications/abstracts/country-profiles-on-nutrition,-physical-activity-and-obesity-in-the-53-who-european-region-member-states.-methodology-and-summary-2013 (8.02.2022).
  12. Pyka B, Zieleń-Zynek I, Kowalska J, et al. Zalecenia dietetyczne dotyczące spożywania jodu — w poszukiwaniu konsensusu między kardiologami a endokrynologami. Folia Cardiologica. 2019; 14(2): 156–160.
  13. Szafraniec K. Jod w diecie – rola, występowanie i zapotrzebowanie. https://dietetycy.org.pl/jod-w-diecie-rola-wystepowanie-i-zapotrzebowanie/ (8.02.2022).
  14. Hryszko K. Reasumpcja. Rynek ryb. Stan i perspektywy. 2019(30): 3S–6S.
  15. Ratajczak M, Gietka-Czernel M. Rola selenu w organizmie człowieka. The influence of selenium to humanhealth. Post N Med. 2016; 29(12): 929S–933S.
  16. Wu Q, Rayman MP, Lv H, et al. Low Population Selenium Status Is Associated With Increased Prevalence of Thyroid Disease. J Clin Endocrinol Metab. 2015; 100(11): 4037–4047.
  17. Pirola I, Gandossi E, Agosti B, et al. Selenium supplementation could restore euthyroidism in subclinical hypothyroid patients with autoimmune thyroiditis. Endokrynol Pol. 2016; 67(6): 567–571.
  18. Klecha B, Bukowska B. Selen w organizmie człowieka - charakterystyka pierwiastka i potencjalne zastosowanie terapeutyczne. Bromat Chem Toksykol. 2016; 49: 818S–829S.
  19. Wichman J, Winther KH, Bonnema SJ, et al. Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: a systematic review and meta-analysis. Thyroid. 2016; 26(12): 1681–1692.
  20. Lima L, Stonehouse G, Walters C, et al. Selenium accumulation, speciation and localization in brazil nuts (bertholletia excelsa H.B.K.). Plants. 2019; 8(8): 289.
  21. Gertig H. Bromatologia. Zarys nauki o żywności i żywieniu. PZWL Wydawnictwo Lekarskie, Warszawa 2015.
  22. Winther KH, Bonnema SJ, Cold F, et al. Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population. Eur J Endocrinol. 2015; 172(6): 657–667.
  23. Przygoda B. Cynk. Medycyna Praktyczna. 2012. https://www.mp.pl/pacjent/dieta/zasady/74604,cynk (8.02.2022).
  24. Kralik A, Eder K, Kirchgessner M. Influence of zinc and selenium deficiency on parameters relating to thyroid hormone metabolism. Horm Metab Res. 1996; 28(5): 223–226.
  25. Mahmoodianfard S, Vafa M, Golgiri F, et al. Effects of zinc and selenium supplementation on thyroid function in overweight and obese hypothyroid female patients: a randomized double-blind controlled trial. J Am Coll Nutr. 2015; 34(5): 391–399.
  26. Betsy A, Binitha Mp, Sarita S. Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int J Trichology. 2013; 5(1): 40–42.
  27. Polska E. Wpływ nawyków żywieniowych i palenia papierosów na stężenie cynku w surowicy krwi kobiet z chorobą Hashimoto. Bromat Chem Toksykol. 2012; 45(3): 759S–765S.
  28. Mocchegiani E, Romeo J, Malavolta M, et al. Zinc: dietary intake and impact of supplementation on immune function in elderly. Age (Dordr). 2013; 35(3): 839–860.
  29. Fein HG, Rivlin RS. Anemia in thyroid diseases. Med Clin North Am. 1975; 59(5): 1133–1145.
  30. Khatiwada S, Gelal B, Baral N, et al. Association between iron status and thyroid function in Nepalese children. Thyroid Res. 2016; 9: 2.
  31. Ipek IO, Kacmaz E, Bozaykut A, et al. The effect of iron deficiency anemia on plasma thyroid hormone levels in childhood. Turkish Pediatrics Archive. 2011: 129S–133S.
  32. Erdogan M, Mehmet E, Kösenli A, et al. Characteristics of anemia in subclinical and overt hypothyroid patients. Endocr J. 2012; 59(3): 213–220.
  33. Bivolarska A, Gatseva P, Maneva A. Association Between Thyroid and Iron Status of Pregnant Women in Southern Bulgaria. Journal of Endocrinology and Diabetes Mellitus. 2013.
  34. Wang K, Wei H, Zhang W, et al. Severely low serum magnesium is associated with increased risks of positive anti-thyroglobulin antibody and hypothyroidism: A cross-sectional study. Sci Rep. 2018; 8(1): 9904.
  35. Moncayo R, Moncayo H. The WOMED model of benign thyroid disease: Acquired magnesium deficiency due to physical and psychological stressors relates to dysfunction of oxidative phosphorylation. BBA Clin. 2015; 3: 44–64.
  36. Iskra M, Krasińska B, Tykarski A. Magnesium — physiological role, clinical importance of deficiency in hypertension and related diseases, and possibility of supplementation in the human body. Arterial Hypertension. 2013; 17(6): 447–459.
  37. Nettore IC, Albano L, Ungaro P, et al. Sunshine vitamin and thyroid. Rev Endocr Metab Disord. 2017; 18(3): 347–354.
  38. Chailurkit Lo, Aekplakorn W, Ongphiphadhanakul B. High vitamin D status in younger individuals is associated with low circulating thyrotropin. Thyroid. 2013; 23(1): 25–30.
  39. Zhang Q, Wang Z, Sun M, et al. Association of high vitamin d status with low circulating thyroid-stimulating hormone independent of thyroid hormone levels in middle-aged and elderly males. Int J Endocrinol. 2014; 2014: 631819.
  40. Liu S, Xiong F, Liu Em, et al. Effects of 1,25-dihydroxyvitamin D3 in rats with experimental autoimmune thyroiditis. Nan Fang Yi Ke Da Xue Xue Bao. 2010; 30(7): 1573–1576.
  41. Chang SW, Lee HC. Vitamin D and health - The missing vitamin in humans. Pediatr Neonatol. 2019; 60(3): 237–244.
  42. Rusińska A, Płudowski P, Walczak M, et al. Vitamin D Supplementation Guidelines for General Population and Groups at Risk of Vitamin D Deficiency in Poland-Recommendations of the Polish Society of Pediatric Endocrinology and Diabetes and the Expert Panel With Participation of National Specialist Consultants and Representatives of Scientific Societies-2018 Update. Postępy Neonatologii. 2018; 2018(31): 246.
  43. Sworczak K, Wiśniewski P. The role of vitamins in the prevention and treatment of thyroid disorders. Endokrynol Pol. 2011; 62(4): 340–344.
  44. Rabeh NM. Effect of iron, zinc, vitamin e and vitamin c supplementation on thyroid hormones in rats with hypothyroidism. International Journal of Nutrition and Food Sciences. 2016; 5(3): 201.
  45. Pan T, Zhong M, Zhong X, et al. Levothyroxine replacement therapy with vitamin E supplementation prevents oxidative stress and cognitive deficit in experimental hypothyroidism. Endocrine. 2013; 43(2): 434–439.
  46. Farhangi MA, Keshavarz SA, Eshraghian M, et al. The effect of vitamin A supplementation on thyroid function in premenopausal women. J Am Coll Nutr. 2012; 31(4): 268–274.
  47. Jubiz W, Ramirez M. Effect of vitamin C on the absorption of levothyroxine in patients with hypothyroidism and gastritis. J Clin Endocrinol Metab. 2014; 99(6): E1031–E1034.
  48. Shahidi F, Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol. 2018; 9: 345–381.
  49. Chin KY, Ima-Nirwana S, Mohamed IN, et al. The relationships between thyroid hormones and thyroid-stimulating hormone with lipid profile in euthyroid men. Int J Med Sci. 2014; 11(4): 349–355.
  50. Abd Allah ESH, Gomaa AMS, Sayed MM. The effect of omega-3 on cognition in hypothyroid adult male rats. Acta Physiol Hung. 2014; 101(3): 362–376.
  51. Tajalizadekhoob Y, Sharifi F, Fakhrzadeh H, et al. The effect of low-dose omega 3 fatty acids on the treatment of mild to moderate depression in the elderly: a double-blind, randomized, placebo-controlled study. Eur Arch Psychiatry Clin Neurosci. 2011; 261(8): 539–549.
  52. Szajewska H. Kwasy omega-3. Medycyna Praktyczna. 2016. https://www.mp.pl/pacjent/pediatria/zywienie/72288,kwasy-omega-3 (8.02.2022).
  53. Benvenga S, Feldt-Rasmussen U, Bonofiglio D, et al. Nutraceutical supplements in the thyroid setting: health benefits beyond basic nutrition. Nutrients. 2019; 11(9).
  54. Nordio M, Pajalich R. Combined treatment with Myo-inositol and selenium ensures euthyroidism in subclinical hypothyroidism patients with autoimmune thyroiditis. J Thyroid Res. 2013; 2013: 424163.
  55. Ferrari SM, Fallahi P, Di Bari F, et al. Myo-inositol and selenium reduce the risk of developing overt hypothyroidism in patients with autoimmune thyroiditis. Eur Rev Med Pharmacol Sci. 2017; 21(2 Suppl): 36–42.
  56. Carlomagno G, Unfer V. Inositol safety: clinical evidences. Eur Rev Med Pharmacol Sci. 2011; 15(8): 931–936.
  57. Porcaro G, Angelozzi P. Myo-inositol and selenium prevent subclinical hypothyroidism during pregnancy: an observational study. IJMDAT. 2018; 1(2): e164.
  58. Sharma AK, Basu I, Singh S. Efficacy and Safety of Ashwagandha Root Extract in Subclinical Hypothyroid Patients: A Double-Blind, Randomized Placebo-Controlled Trial. J Altern Complement Med. 2018; 24(3): 243–248.
  59. Ashwagandha. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases 2012.
  60. Torres-Farfan C, Valenzuela FJ, Germain AM, et al. Maternal melatonin stimulates growth and prevents maturation of the capuchin monkey fetal adrenal gland. J Pineal Res. 2006; 41(1): 58–66.
  61. Sheer FA, Van Montfrans GA, Van Someren EJW. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension. 2004; 43(2): 192–197.
  62. Koyama H, Nakade O, Takada Y, et al. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res. 2002; 17(7): 1219–1229.
  63. Roy D, Belsham DD. Melatonin receptor activation regulates GnRH gene expression and secretion in GT1-7 GnRH neurons. Signal transduction mechanisms. J Biol Chem. 2002; 277(1): 251–258.
  64. de Albuquerque YM, Ferreira CG, D Assunção CG, et al. Effect of melatonin on gonad and thyroid development of offspring of hypothyroid pregnant rats. Biotech Histochem. 2020; 95(7): 522–531.
  65. Soszyński P, Zgliczyński S, Pucilowska J. The circadian rhythm of melatonin in hypothyroidism and hyperthyroidism. Acta Endocrinol (Copenh). 1988; 119(2): 240–244.
  66. Al-Ali A, Alkhawajah AA, Randhawa MA, et al. Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J Ayub Med Coll Abbottabad. 2008; 20(2): 25–27.
  67. Bakathir HA, Abbas NA. Detection of the antibacterial effect of Nigella sativa ground seeds with water. Afr J Tradit Complement Altern Med. 2011; 8(2): 159–164.
  68. Rogozhin EA, Oshchepkova YI, Odintsova TI, et al. Novel antifungal defensins from Nigella sativa L. seeds. Plant Physiol Biochem. 2011; 49(2): 131–137.
  69. Umar S, Zargan J, Umar K, et al. Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem Biol Interact. 2012; 197(1): 40–46.
  70. Salama RH. Hypoglycemic effect of lipoic Acid, carnitine and nigella sativa in diabetic rat model. Int J Health Sci (Qassim). 2011; 5(2): 126–134.
  71. Woo CC, Loo SY, Gee V, et al. Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-γ pathway. Biochem Pharmacol. 2011; 82(5): 464–475.
  72. Zafeer MF, Waseem M, Chaudhary S, et al. Cadmium-induced hepatotoxicity and its abrogation by thymoquinone. J Biochem Mol Toxicol. 2012; 26(5): 199–205.
  73. Saleem U, Ahmad B, Rehman K, et al. Nephro-protective effect of vitamin C and Nigella sativa oil on gentamicin associated nephrotoxicity in rabbits. Pak J Pharm Sci. 2012; 25(4): 727–730.
  74. Chen P, Xie Y, Shen E, et al. Astragaloside IV attenuates myocardial fibrosis by inhibiting TGF-β1 signaling in coxsackievirus B3-induced cardiomyopathy. Eur J Pharmacol. 2011; 658(2-3): 168–174.
  75. Liu X, Min W. Protective effects of astragaloside against ultraviolet A-induced photoaging in human fibroblasts. Zhong Xi Yi Jie He Xue Bao. 2011; 9(3): 328–332.
  76. Cheng MX, Chen ZZ, Cai YL, et al. Astragaloside IV protects against ischemia reperfusion in a murine model of orthotopic liver transplantation. Transplant Proc. 2011; 43(5): 1456–1461.
  77. Lv L, Wu SY, Wang GF, et al. Effect of astragaloside IV on hepatic glucose-regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Phytother Res. 2010; 24(2): 219–224.
  78. Zhang K, Wang Y, Ma W, et al. Genistein improves thyroid function in Hashimoto's thyroiditis patients through regulating Th1 cytokines. Immunobiology. 2017; 222(2): 183–187.
  79. Kang H, Lieberman PM. Mechanism of glycyrrhizic acid inhibition of Kaposi's sarcoma-associated herpesvirus: disruption of CTCF-cohesin-mediated RNA polymerase II pausing and sister chromatid cohesion. J Virol. 2011; 85(21): 11159–11169.
  80. Matsumoto Y, Matsuura T, Aoyagi H, et al. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro. PLoS One. 2013; 8(7): e68992.
  81. Li C, Peng S, Liu X, et al. Glycyrrhizin, a direct HMGB1 antagonist, ameliorates inflammatory infiltration in a model of autoimmune thyroiditis via inhibition of TLR2-HMGB1 signaling. Thyroid. 2017; 27(5): 722–731.
  82. Orazizadeh M, Fakhredini F, Mansouri E, et al. Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chem Biol Interact. 2014; 220: 214–221.
  83. Hostetler BJ, Uchakina ON, Ban H, et al. Treatment of hematological malignancies with glycyrrhizic acid. Anticancer Res. 2017; 37(3): 997–1004.
  84. Abdel-Wahhab KG, Mourad HH, Mannaa FA, et al. Role of ashwagandha methanolic extract in the regulation of thyroid profile in hypothyroidism modeled rats. Mol Biol Rep. 2019; 46(4): 3637–3649.
  85. Gannon JM, Forrest PE, Roy Chengappa KN. Subtle changes in thyroid indices during a placebo-controlled study of an extract of Withania somnifera in persons with bipolar disorder. J Ayurveda Integr Med. 2014; 5(4): 241–245.
  86. Mohibbullah Md, Bashir KM, Kim SK, et al. Protective effects of a mixed plant extracts derived from Astragalus membranaceus and Laminaria japonica on PTU-induced hypothyroidism and liver damages. J Food Biochem. 2019; 43(7): e12853.
  87. Chen F, Li Na, Xiu L, et al. Comparative efficacy of haizao yuhu decoction composed of different varieties of in goiter rats. Evid Based Complement Alternat Med. 2021; 2021: 4343239.
  88. Farhangi MA, Dehghan P, Tajmiri S, et al. The effects of Nigella sativa on thyroid function, serum Vascular Endothelial Growth Factor (VEGF) - 1, Nesfatin-1 and anthropometric features in patients with Hashimoto's thyroiditis: a randomized controlled trial. BMC Complement Altern Med. 2016; 16(1): 471.
  89. Laskar P, Acharjee S, Singh SS. Effect of Exogenous Melatonin on Thyroxine (T4), Thyrotropin (TSH) Hormone Levels and Expression patterns of Melatonin Receptor (MT1 and MT2) Proteins on Thyroid gland during Different age groups of Male and Female Swiss albino Mice. Advances in Bioresearch. 2015; 6(61): 7–14.