Tom 15, Nr 1 (2018)
Choroba wieńcowa
Opublikowany online: 2018-05-25

dostęp otwarty

Wyświetlenia strony 552
Wyświetlenia/pobrania artykułu 1261
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Aterektomia rotacyjna — renesans metody

Jaroslaw Gorol1, Mateusz Tajstra1, Mariusz Gąsior1, Andrzej Lekston1
Choroby Serca i Naczyń 2018;15(1):29-35.

Streszczenie

Postępy w diagnostyce i leczeniu chorób układu sercowo-naczyniowego sprawiają, że pod opieką kardiologów znajdują się coraz starsi chorzy. Z wiekiem wzrasta także stopień uwapnienia tętnic wieńcowych. Uwapnione zmiany są najczęstszą przyczyną niepowodzeń zabiegów angioplastyki wieńcowej. Rewaskularyzacja pacjentów z uwapnionymi zmianami tętnic wieńcowych często stanowi wyzwanie dla kardiologa. Alternatywną metodą, która stanowi szansę na powodzenie zabiegu u takich chorych, jest aterektomia rotacyjna (RA), technika ta pozwala na modyfikację blaszki miażdżycowej i wprowadzenie stentu. Chociaż RA nie zaleca się jako rutynowej procedury przed implantacją stentu, to w wielu przypadkach umożliwia poprawę rokowania i jakości życia. W ostatnich latach rola rotablacji się zwiększa, dlatego w niniejszej pracy zaprezentowano aktualny stan wiedzy dotyczący tej metody.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Kawaguchi R, Tsurugaya H, Hoshizaki H, et al. Impact of lesion calcification on clinical and angiographic outcome after sirolimus-eluting stent implantation in real-world patients. Cardiovasc Revasc Med. 2008; 9(1): 2–8.
  2. Moussa I, Ellis SG, Jones M, et al. Impact of coronary culprit lesion calcium in patients undergoing paclitaxel-eluting stent implantation (a TAXUS-IV sub study). Am J Cardiol. 2005; 96(9): 1242–1247.
  3. Mintz GS, Popma JJ, Pichard AD, et al. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation. 1995; 91(7): 1959–1965.
  4. Guzman RJ. Clinical, cellular, and molecular aspects of arterial calcification. J Vasc Surg. 2007; 45 Suppl A: A57–A63.
  5. Wexler L, Brundage B, Crouse J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group. Circulation. 1996; 94(5): 1175–1192.
  6. Gilutz H, Weinstein JM, Ilia R. Repeated balloon rupture during coronary stenting due to a calcified lesion: an intravascular ultrasound study. Catheter Cardiovasc Interv. 2000; 50(2): 212–214, doi: 10.1002/(sici)1522-726x(200006)50:2<212::aid-ccd15>3.0.co;2-t.
  7. Pershad A, Buchbinder M. Management of calcified lesions in 2004. Int J Cardiovasc Intervent. 2005; 7(4): 199–204.
  8. Moussa I, Di Mario C, Moses J, et al. Coronary stenting after rotational atherectomy in calcified and complex lesions. Angiographic and clinical follow-up results. Circulation. 1997; 96(1): 128–136.
  9. Benezet J, Díaz de la Llera LS, Cubero JM, et al. Drug-eluting stents following rotational atherectomy for heavily calcified coronary lesions: long-term clinical outcomes. J Invasive Cardiol. 2011; 23(1): 28–32.
  10. Fourrier JL, Bertrand ME, Auth DC, et al. Percutaneous coronary rotational angioplasty in humans: preliminary report. J Am Coll Cardiol. 1989; 14(5): 1278–1282.
  11. Ritchie JL, Hansen DD, Intlekofer MJ, et al. Rotational approaches to atherectomy and thrombectomy. Z Kardiol. 1987; 76(Suppl 6): 59–65.
  12. Zimarino M, Corcos T, Bramucci E, et al. Rotational atherectomy: a “survivor” in the drug-eluting stent era. Cardiovasc Revasc Med. 2012; 13(3): 185–192.
  13. Mintz GS, Potkin BN, Keren G, et al. Intravascular ultrasound evaluation of the effect of rotational atherectomy in obstructive atherosclerotic coronary artery disease. Circulation. 1992; 86(5): 1383–1393.
  14. Kovach JA, Mintz GS, Pichard AD, et al. Sequential intravascular ultrasound characterization of the mechanisms of rotational atherectomy and adjunct balloon angioplasty. J Am Coll Cardiol. 1993; 22(4): 1024–1032.
  15. Farb A, Roberts DK, Pichard AD, et al. Coronary artery morphologic features after coronary rotational atherectomy: insights into mechanisms of lumen enlargement and embolization. Am Heart J. 1995; 129(6): 1058–1067.
  16. Hansen DD, Auth DC, Vracko R, et al. Rotational atherectomy in atherosclerotic rabbit iliac arteries. Am Heart J. 1988; 115(1 Pt 1): 160–165.
  17. Matsuo H, Watanabe S, Watanabe T, et al. Prevention of no-reflow/slow-flow phenomenon during rotational atherectomy — a prospective randomized study comparing intracoronary continuous infusion of verapamil and nicorandil. Am Heart J. 2007; 154(5): 994.e1–994.e6.
  18. Kume T, Okura H, Kawamoto T, et al. Assessment of the histological characteristics of coronary arterial plaque with severe calcification. Circ J. 2007; 71(5): 643–647.
  19. Abdel-Wahab M, Richardt G, Joachim Büttner H, et al. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial. JACC Cardiovasc Interv. 2013; 6(1): 10–19.
  20. Abdel-Wahab M, Baev R, Dieker P, et al. Long-term clinical outcome of rotational atherectomy followed by drug-eluting stent implantation in complex calcified coronary lesions. Catheter Cardiovasc Interv. 2013; 81(2): 285–291.
  21. Naito R, Sakakura K, Wada H, et al. Comparison of long-term clinical outcomes between sirolimus-eluting stents and paclitaxel-eluting stents following rotational atherectomy. Int Heart J. 2012; 53(3): 149–153.
  22. García de Lara J, Pinar E, Ramón Gimeno J, et al. Percutaneous coronary intervention in heavily calcified lesions using rotational atherectomy and paclitaxel-eluting stents: outcomes at one year. Rev Esp Cardiol. 2010; 63(1): 107–110.
  23. Kawamoto H, Latib A, Ruparelia N, et al. In-hospital and midterm clinical outcomes of rotational atherectomy followed by stent implantation: the ROTATE multicentre registry. EuroIntervention. 2016; 12(12): 1448–1456.
  24. Sakakura K, Ako J, Wada H, et al. Comparison of frequency of complications with on-label versus off-label use of rotational atherectomy. Am J Cardiol. 2012; 110(4): 498–501.
  25. Safian RD, Feldman T, Muller DW, et al. Coronary angioplasty and Rotablator atherectomy trial (CARAT): immediate and late results of a prospective multicenter randomized trial. Catheter Cardiovasc Interv. 2001; 53(2): 213–220.
  26. Whitlow PL, Bass TA, Kipperman RM, et al. Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am J Cardiol. 2001; 87(6): 699–705.
  27. Tomey MI, Kini AS, Sharma SK. Current status of rotational atherectomy. JACC Cardiovasc Interv. 2014; 7(4): 345–353.
  28. Reisman M, Shuman BJ, Dillard D, et al. Analysis of low-speed rotational atherectomy for the reduction of platelet aggregation. Cathet Cardiovasc Diagn. 1998; 45(2): 208–214.
  29. Barbato E, Carrié D, Dardas P, et al. European Association of Percutaneous Cardiovascular Interventions. European expert consensus on rotational atherectomy. EuroIntervention. 2015; 11(1): 30–36.
  30. Bertrand ME, Van Be. Rotational atherectomy. In: Topol E. ed. Text Book of Interventional Cardiology. Saunders, Philadelphia 2003: 549–557.
  31. Corcos T, Favereau X, Guérin Y, et al. [Multi-instrumental revascularization adjusted to coronary lesions (MIRACLE). Current role of new technologies]. Arch Mal Coeur Vaiss. 1995; 88(10): 1445–1451.
  32. Reifart N, Vandormael M, Krajcar M, et al. Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer Laser, Rotational Atherectomy, and Balloon Angioplasty Comparison (ERBAC) Study. Circulation. 1997; 96(1): 91–98.
  33. Dill T, Dietz U, Hamm CW, et al. A randomized comparison of balloon angioplasty versus rotational atherectomy in complex coronary lesions (COBRA study). Eur Heart J. 2000; 21(21): 1759–1766.
  34. Mauri L, Reisman M, Buchbinder M, et al. Comparison of rotational atherectomy with conventional balloon angioplasty in the prevention of restenosis of small coronary arteries: results of the Dilatation vs Ablation Revascularization Trial Targeting Restenosis (DART). Am Heart J. 2003; 145(5): 847–854.
  35. Moussa I, Di Mario C, Moses J, et al. Coronary stenting after rotational atherectomy in calcified and complex lesions. Angiographic and clinical follow-up results. Circulation. 1997; 96(1): 128–136.
  36. Khattab AA, Otto A, Hochadel M, et al. Drug-eluting stents versus bare metal stents following rotational atherectomy for heavily calcified coronary lesions: late angiographic and clinical follow-up results. J Interv Cardiol. 2007; 20(2): 100–106.
  37. Zhang BC, Wang C, Li WH, et al. Clinical outcome of drug-eluting versus bare-metal stents in patients with calcified coronary lesions: a meta-analysis. Intern Med J. 2015; 45(2): 203–211.
  38. Madhavan MV, Tarigopula M, Mintz GS, et al. Coronary artery calcification: pathogenesis and prognostic implications. J Am Coll Cardiol. 2014; 63(17): 1703–1714.
  39. Dardas P, Mezilis N, Ninios V, et al. The use of rotational atherectomy and drug-eluting stents in the treatment of heavily calcified coronary lesions. Hellenic J Cardiol. 2011; 52(5): 399–406.
  40. Vaquerizo B, Serra A, Miranda F, et al. Aggressive plaque modification with rotational atherectomy and/or cutting balloon before drug-eluting stent implantation for the treatment of calcified coronary lesions. J Interv Cardiol. 2010; 23(3): 240–248.
  41. de Waha S, Allali A, Büttner HJ, et al. Rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: Two-year clinical outcome of the randomized ROTAXUS trial. Catheter Cardiovasc Interv. 2016; 87(4): 691–700.
  42. Mota P, Santos R, Pereira H. Facts on rotational atherectomy for coronary artery disease: multicentric registry (abstr). EuroPCR, Paris 2013.
  43. Wijns W, Kolh P, Danchin N, et al. Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS), European Association for Percutaneous Cardiovascular Interventions (EAPCI). Guidelines on myocardial revascularization. Eur Heart J. 2010; 31(20): 2501–2555.
  44. Levine GN, Bates ER, Blankenship JC, et al. American College of Cardiology Foundation, American Heart Association Task Force on Practice Guidelines, Society for Cardiovascular Angiography and Interventions. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011; 58(24): e44–122.
  45. Windecker S, Kolh P, Alfonso F, et al. Authors/Task Force members. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014; 35(37): 2541–2619.
  46. Barbato E, Colombo A, Heyndrickx GR. Rotational Atherectomy. In PCR-EAPCI textbook on percutaneous interventional cardiovascular medicine. Europa Digital & Publishing, Toulouse 2012: 195–211.
  47. Sharma SK, Kini A, Mehran R, et al. Randomized trial of Rotational Atherectomy Versus Balloon Angioplasty for Diffuse In-stent Restenosis (ROSTER). Am Heart J. 2004; 147(1): 16–22.
  48. vom Dahl Jv, Dietz U, Haager PK, et al. Rotational Atherectomy Does Not Reduce Recurrent In-Stent Restenosis: Results of the Angioplasty Versus Rotational Atherectomy for Treatment of Diffuse In-Stent Restenosis Trial (ARTIST). Circulation. 2002; 105(5): 583–588.
  49. Édes IF, Ruzsa Z, Szabó G, et al. Rotational atherectomy of undilatable coronary stents: stentablation, a clinical perspective and recommendation. EuroIntervention. 2016; 12(5): e632–e635.
  50. Tsuchikane E, Suzuki T, Asakura Y, et al. DOCTORS Investigators. Debulking of chronic coronary total occlusions with rotational or directional atherectomy before stenting: Final results of DOCTORS study. Int J Cardiol. 2008; 125(3): 397–403.
  51. O'Neill WW, Kleiman NS, Moses J, et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation. 2012; 126(14): 1717–1727.
  52. Cohen MG, Ghatak A, Kleiman NS, et al. Optimizing rotational atherectomy in high-risk percutaneous coronary interventions: insights from the PROTECT ΙΙ study. Catheter Cardiovasc Interv. 2014; 83(7): 1057–1064.
  53. Parikh K, Chandra P, Choksi N, et al. Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: the ORBIT I trial. Catheter Cardiovasc Interv. 2013; 81(7): 1134–1139.
  54. Chambers JW, Feldman RL, Himmelstein SI, et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc Interv. 2014; 7(5): 510–518.
  55. Bhatt P, Parikh P, Patel A, et al. Long-term safety and performance of the orbital atherectomy system for treating calcified coronary artery lesions: 5-Year follow-up in the ORBIT I trial. Cardiovasc Revasc Med. 2015; 16(4): 213–216.
  56. Lee M, Généreux P, Shlofmitz R, et al. Orbital atherectomy for treating de novo, severely calcified coronary lesions: 3-year results of the pivotal ORBIT II trial. Cardiovasc Revasc Med. 2017; 18(4): 261–264.