Online first
Original article
Published online: 2024-12-24

open access

Page views 281
Article views/downloads 231
Get Citation

Connect on Social Media

Connect on Social Media

The role of MicroRNAs in arrhythmogenic right ventricular cardiomyopathy: A systematic review

Aleksandra Kuch1, Grzegorz Procyk12, Karolina Borowiec3, Aleksandra Gąsecka1, Elżbieta Katarzyna Biernacka3

Abstract

Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare inherited heart condition with structural and functional abnormalities of the right ventricle. Microribonucleic acids (miRNAs, miRs) could be a solution in detecting ARVC earlier, more commonly, and in a less invasive way.

Aims: We aimed to systematically review the current knowledge about the role of miRNAs in ARVC.

Methods: Primary original research written in English assessing miRNAs in ARVC were included. Systematic reviews, meta-analyses, reviews, case reports, letters to editors, commentaries, conference abstracts, guidelines/statements, expert opinions, pre-prints, and book chapters were excluded at the screening stage. Five databases were searched: Embase, Medline Ultimate, PubMed, Scopus, and Web of Science, last on October 4, 2024. Eventually, 3 13 original studies relevant to the discussed area were included. The quality of research was assessed with the Newcastle–Ottawa Scale.

Results: MiR-216a was consistently increased in mice ARVC models and in patients suffering from this disease. Based on the reviewed literature, miR-1, miR-21, and miR-122 are other most important miRNAs in the ARVC. Nevertheless, the research that has already been performed on these miRNAs gives evidence only for their diagnostic potential. Bioinformatic analyses revealed that the following miRNAs are the most important ones involved in ARVC: let-7b, miR-10b-5p, miR-15a-5p, miR-21-5p, miR-29b-3p, miR-122-5p, miR-144-3p, miR-149-5p, miR-182-5p, miR-186-5p, miR-320a, miR-494-3p, and miR-590-3p.

Conclusions: Creating a miRNA panel that could identify ARVC patients with high sensitivity and specificity would be helpful. Currently, there are many gaps in the existing knowledge, which makes miRNA in ARVC an attractive field for future investigation.

Article available in PDF format

View PDF Download PDF file

References

  1. Basso C, Corrado D, Bauce B, et al. Arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2012; 5(6): 1233–1246.
  2. Gemayel C, Pelliccia A, Thompson PD. Arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2001; 38(7): 1773–1781.
  3. Altmayer S, Nazarian S, Han Y. Left ventricular dysfunction in arrhythmogenic right ventricular cardiomyopathy (ARVC): Can we separate ARVC from other arrhythmogenic cardiomyopathies? J Am Heart Assoc. 2020; 9(23): e018866.
  4. Arbelo E, Protonotarios A, Gimeno JR, et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J. 2023; 44(37): 3503–3626.
  5. Haugaa KH, Haland TF, Leren IS, et al. Arrhythmogenic right ventricular cardiomyopathy, clinical manifestations, and diagnosis. Europace. 2016; 18(7): 965–972.
  6. Casian M, Papadakis M, Jurcut R. Arrhythmogenic right ventricular cardiomyopathies (ARVC): Diagnostic challenges from imaging to genetics. Pol Heart J. 2024 [Epub ahead of print].
  7. Krahn AD, Wilde AAM, Calkins H, et al. Arrhythmogenic right ventricular cardiomyopathy. JACC: Clin Electrophysiol. 2022; 8(4): 533–553.
  8. Basso C, Corrado D, Marcus F, et al. Arrhythmogenic right ventricular cardiomyopathy. Lancet. 2009; 373(9671): 1289–1300.
  9. Corrado D, Basso C, Thiene G. Arrhythmogenic right ventricular cardiomyopathy: An update. Heart. 2009; 95(9): 766–773.
  10. Corrado D, Basso C, Judge DP. Arrhythmogenic cardiomyopathy. Circ Res. 2017; 121(7): 784–802.
  11. Mizia-Stec K, Burchardt P, Mazurkiewicz Ł, et al. Position statement of Polish Cardiac Society experts on cardiomyopathy. Pol Heart J. 2024; 82(10): 1040–1053.
  12. Calkins H, Corrado D, Marcus F. Risk stratification in arrhythmogenic right ventricular cardiomyopathy. Circulation. 2017; 136(21): 2068–2082.
  13. Starega-Roslan J, Krol J, Koscianska E, et al. Structural basis of microRNA length variety. Nucleic Acids Res. 2011; 39(1): 257–268.
  14. Du T, Zamore PD. Beginning to understand microRNA function. Cell Res. 2007; 17(8): 661–663.
  15. Moreno-Moya JM, Vilella F, Simón C. MicroRNA: Key gene expression regulators. Fertil Steril. 2014; 101(6): 1516–1523.
  16. Kuosmanen SM, Hartikainen J, Hippeläinen M, et al. MicroRNA profiling of pericardial fluid samples from patients with heart failure. PLoS One. 2015; 10(3): e0119646.
  17. Layne TR, Green RA, Lewis CA, et al. microRNA detection in blood, urine, semen, and saliva stains after compromising treatments. J Forensic Sci. 2019; 64(6): 1831–1837.
  18. Grodzka O, Procyk G, Gąsecka A. The role of MicroRNAs in myocarditis — what can we learn from clinical trials? Int J Mol Sci. 2022; 23(24).
  19. Grodzka O, Procyk G, Wrzosek M. A narrative review of preclinical in vitro studies investigating microRNAs in myocarditis. Curr Issues Mol Biol. 2024; 46(2): 1413–1423.
  20. Krauze A, Procyk G, Gąsecka A, et al. The role of microRNAs in aortic stenosis-lessons from recent clinical research studies. Int J Mol Sci. 2023; 24(17).
  21. Procyk G, Grodzka O, Procyk M, et al. MicroRNAs in myocarditis-review of the preclinical in vivo trials. Biomedicines. 2023; 11(10): 2723.
  22. Kiełbowski K, Bakinowska E, Procyk G, et al. The role of microRNA in the pathogenesis of Duchenne muscular dystrophy. Int J Mol Sci. 2024; 25(11): 6108.
  23. Grodzka O, Słyk S, Domitrz I. The role of microRNA in migraine: A systemic literature review. Cell Mol Neurobiol. 2023; 43(7): 3315–3327.
  24. Procyk G, Klimczak-Tomaniak D, Sygitowicz G, et al. Circulating and platelet micrornas in cardiovascular risk assessment and antiplatelet therapy monitoring. J Clin Med. 2022; 11(7): 1763.
  25. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021(372): n71.
  26. GA Wells BS, D O'Connell, J Peterson, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.
  27. Mazurek SR, Calway T, Harmon C, et al. MicroRNA-130a regulation of desmocollin 2 in a novel model of arrhythmogenic cardiomyopathy. Microrna. 2017; 6(2): 143–150.
  28. Rainer J, Meraviglia V, Blankenburg H, et al. The arrhythmogenic cardiomyopathy-specific coding and non-coding transcriptome in human cardiac stromal cells. BMC Genomics. 2018; 19(1): 491.
  29. Calore M, Lorenzon A, Vitiello L, et al. A novel murine model for arrhythmogenic cardiomyopathy points to a pathogenic role of Wnt signalling and miRNA dysregulation. Cardiovasc Res. 2019; 115(4): 739–751.
  30. Khudiakov AA, Smolina NA, Perepelina KI, et al. Extracellular microRNAs and mitochondrial DNA as potential biomarkers of arrhythmogenic cardiomyopathy. Biochemistry (Mosc). 2019; 84(3): 272–282.
  31. Zhang H, Liu S, Dong T, et al. Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy. Sci Rep. 2016; 6: 28101.
  32. Sommariva E, D'Alessandra Y, Farina FM, et al. MiR-320a as a potential novel circulating biomarker of arrhythmogenic cardiomyopathy. Sci Rep. 2017; 7(1): 4802.
  33. Yamada S, Hsiao YW, Chang SL, et al. Circulating microRNAs in arrhythmogenic right ventricular cardiomyopathy with ventricular arrhythmia. Europace. 2018; 20(FI1): f37–f45.
  34. Bueno Marinas M, Celeghin R, Cason M, et al. A microRNA expression profile as non-invasive biomarker in a large arrhythmogenic cardiomyopathy cohort. Int J Mol Sci. 2020; 21(4): 1536.
  35. Khudiakov AA, Panshin DD, Fomicheva YV, et al. Different expressions of pericardial fluid micrornas in patients with arrhythmogenic right ventricular cardiomyopathy and ischemic heart disease undergoing ventricular tachycardia ablation. Front Cardiovasc Med. 2021; 8: 647812.
  36. Sacchetto C, Mohseni Z, Colpaert RMW, et al. Circulating miR-185-5p as a potential biomarker for arrhythmogenic right ventricular cardiomyopathy. Cells. 2021; 10(10): 2578.
  37. Bonet F, Campuzano O, Córdoba-Caballero J, et al. Role of miRNA-mRNA interactome in pathophysiology of arrhythmogenic cardiomyopathy. Biomedicines. 2024; 12(8): 1807.
  38. Lu W, Li Y, Dai Y, et al. Dominant myocardial fibrosis and complex immune microenvironment jointly shape the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Front Cardiovasc Med. 2022; 9: 900810.
  39. Li H, Song S, Shi A, et al. Identification of potential lncRNA-miRNA-mRNA regulatory network contributing to arrhythmogenic right ventricular cardiomyopathy. J Cardiovasc Dev Dis. 2024; 11(6): 168.