

ISSN 0022-9032

Kardiologia Polska

The Official Peer-reviewed Journal of the Polish Cardiac Society since 1957

Online first

This is a provisional PDF only. Copyedited and fully formatted version will be made available soon

e-ISSN 1897–4279

The role of MicroRNAs in arrhythmogenic right ventricular cardiomyopathy: A systematic review

Authors: Aleksandra Kuch, Grzegorz Procyk, Karolina Borowiec, Aleksandra Gąsecka, Elżbieta Katarzyna Biernacka Article type: Original article Received: August 20, 2024 Accepted: December 24, 2024 Early publication date: December 24, 2024

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

The role of MicroRNAs in arrhythmogenic right ventricular cardiomyopathy: A systematic review

Short title: MicroRNAs in ARVC: A systematic review

Aleksandra Kuch¹*, Grzegorz Procyk^{1, 2}*, Karolina Borowiec³, Aleksandra Gąsecka¹, Elżbieta Katarzyna Biernacka³

¹1st Chair and Department of Cardiology, Medical University of Warsaw, Warszawa, Poland
²Doctoral School, Medical University of Warsaw, Warszawa, Poland
³Department of Congenital Heart Diseases, Cardinal Stefan Wyszynski National Institute of Cardiology, Warszawa, Poland
*Both authors equally contributed to the study.

Correspondence to:

Grzegorz Procyk, MD, 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02–097 Warszawa, Poland, phone: +48 22 599 19 58, e-mail: grzegorz.procyk@wum.edu.pl

ABSTRACT:

Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare inherited heart condition with structural and functional abnormalities of the right ventricle. Microribonucleic acids (miRNAs, miRs) could be a solution in detecting ARVC earlier, more commonly, and in a less invasive way.

Aims: We aimed to systematically review the current knowledge about the role of miRNAs in ARVC.

Methods: Primary original research written in English assessing miRNAs in ARVC were included. Systematic reviews, meta-analyses, reviews, case reports, letters to editors, commentaries, conference abstracts, guidelines/statements, expert opinions, pre-prints, and book chapters were excluded at the screening stage. Five databases were searched: Embase, Medline Ultimate, PubMed, Scopus, and Web of Science, last on October 4, 2024. Eventually,

13 original studies relevant to the discussed area were included. The quality of research was assessed with the Newcastle–Ottawa Scale.

Results: MiR-216a was consistently increased in mice ARVC models and in patients suffering from this disease. Based on the reviewed literature, miR-1, miR-21, and miR-122 are other most important miRNAs in the ARVC. Nevertheless, the research that has already been performed on these miRNAs gives evidence only for their diagnostic potential. Bioinformatic analyses revealed that the following miRNAs are the most important ones involved in ARVC: let-7b, miR-10b-5p, miR-15a-5p, miR-21-5p, miR-29b-3p, miR-122-5p, miR-144-3p, miR-149-5p, miR-182-5p, miR-186-5p, miR-320a, miR-494-3p, and miR-590-3p.

Conclusions: Creating a miRNA panel that could identify ARVC patients with high sensitivity and specificity would be helpful. Currently, there are many gaps in the existing knowledge, which makes miRNA in ARVC an attractive field for future investigation.

Key words: arrhythmias, arrhythmogenic cardiomyopathy, biomarkers, microRNAs, systematic review

WHAT'S NEW?

To the best of our knowledge, it is the first systematic review to summarize the current state of the art regarding the role of miRNAs in arrhythmogenic right ventricular cardiomyopathy (ARVC). After searching five databases, we identified 13 relevant original articles. Consistent findings include increased expression of miR-216a in mice ARVC models and patients suffering from this disease. MiR-1 and miR-21 are other miRNAs worth highlighting in terms of ARVC. Creating a miRNA panel that could identify ARVC patients with high sensitivity and specificity would help decrease the rate of fatal events among people suffering from this disease.

INTRODUCTION

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare inherited heart condition with structural and functional abnormalities of the right ventricle (RV) [1], which is often the cause of life-threatening ventricular arrhythmias and RV failure. Sudden cardiac death could be the first clinical manifestation of the disease when occurring in its early concealed phase [2]. The disease can also affect the left ventricle (LV), which may worsen the prognosis. Recent studies suggest that LV dysfunction is present in up to 60% of cases [3]. Although the broader term "arrhythmogenic cardiomyopathy", which includes forms with predominant or isolated LV involvement (arrhythmogenic left ventricular cardiomyopathy), has gained increased recognition in recent years, the 2023 European Society of Cardiology Guidelines for the management of cardiomyopathies have preserved the traditional phenotype of ARVC, classifying most forms of arrhythmogenic LV cardiomyopathy within the non-dilated left-ventricular cardiomyopathy category [4]. According to this approach, in this systematic review, we use the term ARVC due to the predefined search strategy and to remain consistent with the terms used in the reviewed studies.

For many years, the diagnosis of ARVC has been based on multiparametric clinical criteria developed by the International Task Force Criteria in 2010, including structural, histological, electrocardiographic, arrhythmic, and familial/genetic features. The probability of ARVC (definite, borderline, or possible) is determined according to the presence of major and minor criteria. RV abnormalities, such as regional dyskinesia and dilation of the RV, local RV aneurysms, and fibrofatty replacement of myocardium on endomyocardial biopsy, are considered one of the major criteria. Characteristic findings on electrocardiography include epsilon waves and inverted T-waves in V1–V3, as well as ventricular tachycardia with a left bundle branch block morphology [5]. Identification of pathogenic variants associated with the disease and ARVC confirmed in a first-degree relative are also listed as major factors. Due to the absence of a single diagnostic test, the diagnosis remains challenging, especially in the early stages of the disease [6].

Epidemiology

The prevalence of ARVC varies depending on the geographical location, ranging from about 1:2000 to 1:5000. The disease is slightly more common in males [7]. According to some studies, 3%–4% of sudden deaths are caused by ARVC. It is reported to be the most frequent reason for sudden death in the group of young Italian individuals, especially connected with high-intensity sports [2]. There are several known pathogenic variants in desmosomal genes that can be identified in individuals with ARVC [8]. In 30%–50% of the cases, ARVC is related to family history [9].

Problems in clinical practice

Patients suffering from ARVC have an increased risk of sudden cardiac death, which refers primarily to young adults and athletes [10]. Usually, it does not appear with any symptoms and can lead to an unexpected death at a young age. Despite the latest criteria for diagnosing ARVC, the disease still causes many diagnostic challenges [11]. Characterization of pathological,

clinical, and imagining findings is not specific and can resemble other causes of ventricular tachycardia. Although magnetic resonance imaging is recommended in patients with suspected ARVC, it can be nondiagnostic in the case of early stages of the disease. On the other hand, invasive tests like biopsy are not commonly performed. It explains why so much research aims to find new paths for diagnosing ARVC [12]. Biomarkers could be a solution in detecting ARVC earlier, more commonly, and in a less invasive way.

MicroRNAs as novel biomarkers

Microribonucleic acids (miRNAs, miRs) are small, non-coding ribonucleic acids with about 22 nucleotides [13]. Their role is to regulate gene expression through binding to messenger RNAs (mRNAs) [14]. Such a complementary binding may inhibit the translation process or cause mRNA degradation [15]. MiRNAs can be found in tissues and various body fluids such as blood, pericardial fluid, urine, or saliva [16, 17]. The expression levels of miRNAs are altered in multiple diseases, e.g., cardiovascular [18–21], muscular [22], or neurologic [23] conditions. They can also serve as a valuable tool for therapy monitoring [24]. Recently, they have become very promising biomarkers in many diseases.

We aimed to systematically review the current knowledge about the role of miRNAs in ARVC. We aimed to answer the following questions: 1) Can miRNAs differentiate patients with ARVC from healthy people? 2) Can miRNAs differentiate patients with ARVC from patients with other arrhythmias?

METHODS

This systematic review was conducted according to the PRISMA 2020 Statement [25] (Supplementary material, *Table S1*).

Primary original research, both clinical and preclinical, and bioinformatic analyses written in English assessing miRNAs in ARVC were included. Systematic reviews, metaanalyses, reviews, case reports, letters to editors, commentaries, conference abstracts, guidelines/statements, expert opinions, preprints, and book chapters were excluded at the screening stage. Five databases were searched: Embase, Medline Ultimate, PubMed, Scopus, and Web of Science, by the query: "("miRNA" OR "microRNA" OR "miR" OR "microribonucleic acid") AND ("Arrhythmogenic right ventricular dysplasia" OR "Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy" OR "ARVD" OR "ARVC" OR Cardiomyopathy" "Arrhythmogenic Right Ventricular OR "Arrhythmogenic Cardiomyopathy")" which yielded a total of 339 records. Each database was last searched on October 4, 2024. For each screening stage, we used 2 screeners working together (not independently). Final decisions in arguable cases were reached by a consensus between the 2 screeners. Data from each included work was extracted by 2 extractors working together (not independently).

The following data was extracted from each included research: study characteristics (sample sizes, methodology used, year of publication), the changes in miRNA levels between compared groups, results of receiver operating characteristic (ROC) analysis (area under the curve [AUC]).

After removing 190 duplicates, the remaining 149 records were screened by title and abstract. It yielded 18 records that met the inclusion/exclusion criteria. All 18 studies were retrieved in complete form. The complete data reports were evaluated for eligibility, excluding 5 studies due to inappropriateness. Eventually, 13 original studies relevant to the discussed area were included (Figure 1). The quality of the included studies was assessed using the Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized case-control studies [26] (Supplementary material, *Table S2*).

We divided the studies into the following parts: (i) preclinical research evaluating the role of miRNAs in ARVC, (ii) clinical patient-based research assessing the role of miRNAs in ARVC, (iii) bioinformatic analyses investigating the role of miRNAs in ARVC. The results of the included studies were reported in a narrative form.

RESULTS

Preclinical research evaluating the role of miRNAs in ARVC

Mazurek et al. created a mouse model overexpressing miR-130a and compared it to littermate control mice. They found that transgenic mice developed RV dilation. The electrocardiogram of transgenic mice showed features of an arrhythmogenic phenotype due to the presence of premature ventricular contractions [27].

Further, Rainer et al. [28] assessed miRNA profiles in cardiac stromal cells (CStCs) derived from ARVC patients and healthy controls. They performed an RT-qPCR validation, which showed an upregulation of miR-29b-3p in CStCs derived from ARVC patients compared to controls [28].

Again, Calore et al. [29] performed a study with a murine model for ARVC. They created transgenic mice with the overexpression of human desmoglein-2, either wild-type or truncated. For further analysis, line with the overexpression of the truncated desmoglein-2 — Tg-hQ13, served as a model for ARVC. The authors first evaluated which miRNAs presented

altered expression levels in heart tissue and found that 24 miRNAs were changed in Tg-hQ13 compared to non-transgenic mice (of which 18 were upregulated and six were downregulated). Afterwards, they validated the four most deregulated miRNAs with real-time PCR. MiR-217-5p and miR-708-5p were upregulated, while miR-499-5p was downregulated in Tg-hQ13 mice compared to Tg-hWT40 and non-transgenic mice. On the other hand, miR-216a-5p was upregulated in Tg-hQ13 mice but only when compared to non-transgenic mice (not when compared to Tg-hWT40). In silico, the analysis of predicted target genes for miR-217-5p, miR-708-5p and miR-499-5p identified the following potentially involved pathways: the regulation of the Wnt/b-catenin signaling, adherens junctions, and gap junctions [29].

Another preclinical research was conducted by Khudiakov et al. [30]. They differentiated induced pluripotent stem cells from an ARVC patient and a healthy donor into the cardiomyocytes. Then, they compared the intracellular and extracellular levels of several miRNAs. They found that miR-1, miR-21, miR-133a, miR-208a, miR-378a, and miR-494 were increased in the supernatant compared to the precipitate fraction. Furthermore, miR-21, miR-29b-2, and miR-378a were increased in the supernatant fraction from the ARVC cells compared to the supernatant fraction from the healthy donor cells. MiR-1 and miR-133a were increased in the supernatant and precipitate fractions from ARVC cells compared to the corresponding fractions from the healthy donor cells. Nevertheless, there was no difference in the intracellular levels of miR-1, miR-21, miR-133a, and miR-378a between the ARVC cells and the healthy donor cells [30] . The research discussed in this subsection with additional data is summarized in Table 1.

Clinical patient-based research assessing the role of miRNAs in ARVC

Zhang et al. [31] investigated the miRNA levels in heart samples of ARVC patients. They included ARVC patients undergoing heart transplantation and compared them to healthy controls without any heart disease who died in an accident. First, they examined 1078 various miRNAs in pooled participant samples and found that 24 were significantly dysregulated. In a validation step, in which they assessed all 24 miRNAs individually in each sample, they discovered that miR-21-3p, miR-21-5p, miR-34a-5p, miR-212-3p, miR-216a, miR-584-3p, miR-1251, miR-3621, miR-3674, miR-3692-3p, miR-4286, and miR-4301 were upregulated while miR-135b, miR-138-5p, miR-193b-3p, miR-302b-3p, miR-302c-3p, miR-338-3p, miR-451a, miR-491-3p, miR-575, miR-4254, miR-4643 were downregulated in ARVC patients. The authors also performed a ROC analysis, and almost all miRNAs showed high AUC values

except miR-3674 (AUC 0.585) and miR-451a (AUC 0.653). All other miRNAs had AUC values higher than 0.750 [31].

Sommariva et al. [32] measured miRNA levels in plasma samples from ARVC patients, idiopathic ventricular tachyarrhythmia (IVT) patients, and healthy controls. During the first step, they screened 377 miRNAs in samples from ARVC patients and healthy controls and found that five miRNAs were significantly dysregulated. Next, they measured these miRNA expression levels in all study participants. MiR-302a was the only one that differed between the groups. It had lower expression levels in ARVC patients than in healthy controls and IVT patients. The authors performed a ROC analysis to assess the ability of miR-302a to discriminate ARVC from IVT patients. It had poor performance, with an AUC of only 0.69. Moreover, their AUC did not increase substantially when the miR-302a expression level was added to the global/regional dysfunction criterion or electrocardiogram abnormalities. Interestingly, no correlation between miR-302a level and ARVC severity was found [32].

Yamada et al. [33] recruited patients with ventricular arrhythmia: (i) patients with definite ARVC diagnosis, (ii) patients with borderline/possible ARVC diagnosis, (iii) patients with IVT, and also healthy controls. In the first step, they screened 84 miRNAs, known to be dysregulated in cardiovascular diseases, in patients with definite ARVC diagnosis and healthy controls. They found an altered expression of 17 miRNAs. However, they chose only those miRNAs with four times higher/lower expression levels for the validation step, which was valid for 11 miRNAs. Then, they measured the expression level of these miRNAs in all patients and found that miR-144-3p, miR-145-5p, miR-185-5p, and miR494 had higher levels in definite ARVC patients than other groups. Moreover, in the ROC analysis evaluating the discrimination of patients with definite diagnoses of ARVC from other patients with ventricular arrhythmia, miR-494 had an AUC value of 0.891. Furthermore, they divided patients with definite diagnoses of ARVC who underwent ablation into those who experienced a recurrence of ventricular arrhythmia and those who did not. The first group had higher levels of miR-494 than the latter. MiR-494 was a predictor of ventricular arrhythmia recurrence with an AUC of 0.832 [33].

Bueno Marinas et al. [34] conducted a multi-stage research including not only ARVC patients and healthy controls but also non-affected family members of ARVC probands carrying a desmosomal pathogenic variant (ARVC gen+phen–), hypertrophy cardiomyopathy patients, dilated cardiomyopathy patients, Brugada syndrome patients, and myocarditis patients. They first compared screening with microarrays and RNA sequencing methods in heart tissue and blood samples. Then, they validated 13 candidate miRNAs with qPCR. MiR-122-5p, miR-182-

5p, and miR-183-5p were upregulated, while miR-133a-3p, miR-133b, and miR-142-3p were downregulated in ARVC patients compared to healthy controls. In ROC analysis, all six miRNAs performed well in discriminating ARVC patients from healthy controls (AUC values range: 0.707 to 0.9692). Furthermore, a panel consisting of these six miRNAs was evaluated in ROC analysis to differentiate ARVC patients from healthy controls, ARVC gen+phen-, hypertrophy cardiomyopathy patients, dilated cardiomyopathy patients, Brugada syndrome patients, and myocarditis patients. In each scenario, the AUC value was higher than 0.8 [34].

Khudiakov et al. [35] included patients suffering from ARVC and compared them to patients with post-infarction ventricular tachycardia. They performed an RNA sequencing which showed the upregulation of miR-122-5p, miR-206, miR-1-3p and downregulation of miR-3679-5p, miR-21-5p in ARVC patients compared to the latter group. They found a correlation between RNA-seq and qPCR results for miR-1-3p, miR-21-5p, miR-122-5p, and inconsistency for miR-206, miR-3679-5p. The authors mapped differentially expressed miRNAs against databases with biological processes, and it resulted in the following terms: cell cycle, heart and muscle development, inflammation, hormone-mediated signaling pathway, T-helper 17 cell differentiation, muscle development, skeletal muscle cell differentiation, cell death, cell proliferation, and cardiogenesis [35].

Sacchetto et al. [36] measured miRNA plasma concentration in ARVC patients and healthy controls. First, they performed a pilot study using microarrays. They assessed the expression level of 754 miRNAs and found five differentially expressed miRNAs: miR-505, miR-20b, miR-590-5p, miR-520c-3p, and miR-185-5p. These miRNAs were then validated with qPCR. MiR-20b was downregulated, while miR-185-5p was upregulated in patients suffering from ARVC compared to healthy controls. Moreover, the authors conducted an insilico analysis to look for the predicted target genes for miR-185-5p. Interestingly, the genes found were involved in regulating cell adhesion and in Wnt and Hippo pathways [36].

Bonet et al. [37] performed small RNA-seq analysis to identify differentially expressed miRNAs between patients with a definite diagnosis of ARVC and unrelated ARVC subjects who died from conditions other than cardiac diseases as a control group. They found eight differentially expressed miRNAs: miR-135a-5p, miR-140-3p, and miR-145-5p were upregulated while miR-486-5p, miR-486-3p, miR-125a-5p, let-7e-5p, and let-7d-3p were downregulated in patients with a definite ARVC diagnosis [37]. All studies discussed in this subsection, along with additional data, are summarized in Table 2.

Bioinformatic analyses investigating the role of miRNAs in ARVC

Lu et al. [38] performed a bioinformatic analysis using RNA-sequencing datasets from the Gene Expression Omnibus database. It included ARVC patients and healthy controls — the samples were collected from the right and left ventricular myocardium. The authors made a weighted gene co-expression network analysis. They also looked for long non-coding RNAs (lncRNAs) differentially expressed between ARVC patients and healthy controls. Then, they sought for lncRNA–mRNA pairs and miRNA overlap. They found 258 lncRNA–mRNA pairs with significant miRNA overlaps. The authors also conducted a lncRNA-miRNA-mRNA network analysis, in which the top 3 miRNAs were miR-590-3p, miR-186-5p, and miR-15a-5p [38].

Li et al. [39] conducted another bioinformatic analysis. They analyzed differentially expressed mRNAs, lncRNAs, and miRNAs in ARVC patients. They found altered mRNAs and lncRNAs using the Gene Expression Omnibus database. Meanwhile, deregulated miRNAs were taken from a study by Bueno Marinas et al. [34], which we discussed earlier. First, the authors constructed a miRNA-mRNA network in which they identified 12 downregulated miRNAs targeting 17 upregulated mRNAs and eight upregulated miRNAs targeting 55 downregulated mRNAs. Furthermore, they created a lncRNA-miRNA-mRNA network, in which the following miRNAs could be found: let-7b, miR-10b-5p, miR-21-5p, miR-29b-3p, miR-122-5p, miR-144-3p, miR-149-5p, miR-182-5p, miR-320a, miR-494-3p [39]. Both studies discussed in this subsection with additional data are summarized in Table 3.

DISCUSSION

Not so many studies have been conducted to date investigating the role of miRNAs in ARVC. Nevertheless, the research has been done in both clinical and preclinical scenarios. Overlapping findings include increased expression of miR-216a in mice ARVC models and in patients suffering from this disease. MiR-1 and miR-21 are other miRNAs that are worth being highlighted. The levels of miR-1 were consistently increased in (i) supernatant and precipitant fractions of cardiomyocyte culture derived from induced pluripotent stem cell from ARVC patient, (ii) pericardial fluid of ARVC patients compared to post-infarction ventricular tachyarrhythmia patients. Meanwhile, miR-21 was increased in (i) precipitant fraction of cardiomyocyte culture derived from induced pluripotent stem cell from ARVC patient, (ii) heart samples of ARVC patients compared to healthy controls but decreased in the pericardial fluid of ARVC patients. Furthermore, miR-122 was increased in the pericardial fluid of ARVC patients and in the whole blood of ARVC patients compared to healthy controls.

Two fascinating bioinformatic analyses have already been undertaken. Their main aim was not the assessment of miRNAs in ARVC, but some exciting findings regarding this aspect were also presented. Mainly, it regarded miRNAs involved in the lncRNA-miRNA-mRNA network, particularly: let-7b, miR-10b-5p, miR-15a-5p, miR-21-5p, miR-29b-3p, miR-122-5p, miR-144-3p, miR-149-5p, miR-182-5p, miR-186-5p, miR-320a, miR-494-3p, and miR-590-3p.

Importantly, presented studies often used different laboratory techniques for miRNA measurements. This disenables drawing firm conclusions and making direct, head-to-head comparisons. However, it does not prevent hypothesizing with the aim of conducting further research in the field. Figure 2 presents a comprehensive summary of the current knowledge about the role of miRNAs in ARVC. In order to enable more in-depth interpretation, we have prepared a table demonstrating the top 3 predicted target genes (based on https://mirdb.org) of all miRNAs altered in ARVC (Table 4).

Limitations of the study

We must disclose a limitation of our article: Different study types were included in this systematic review. However, this allowed us to thoroughly present and discuss all available research in the field. The small amount of research in the field allowed us to discuss and summarize all the existing knowledge thoroughly.

CONCLUSIONS

Although the results were sometimes conflicting, a few studies showed that some miRNAs can differentiate patients with ARVC from healthy people, presenting high AUC values in the ROC analysis. Similarly, the researchers discovered several promising miRNAs that could discriminate between patients with ARVC and other arrhythmias.

Creating a miRNA panel that could identify ARVC patients with high sensitivity and specificity would be helpful in decreasing the rate of fatal events among people suffering from this disease. Moreover, it could create a basis for novel therapeutics if some miRNA alterations were causal for ARVC development and progression. Altogether, there are many gaps in the existing knowledge, which makes miRNA in ARVC an attractive field for investigation.

Supplementary material

Supplementary material is available at https://journals.viamedica.pl/polish_heart_journal.

Article information

Conflict of interest: None declared.

Funding: None.

Open access: This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, which allows downloading and sharing articles with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially. For commercial use, please contact the journal office at polishheartjournal@ptkardio.pl

REFERENCES

- Basso C, Corrado D, Bauce B, et al. Arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2012; 5(6): 1233–1246, doi: 10.1161/CIRCEP.111.962035, indexed in Pubmed: 23022706.
- Gemayel C, Pelliccia A, Thompson PD. Arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2001; 38(7): 1773–1781, doi: 10.1016/s0735-1097(01)01654-0, indexed in Pubmed: 11738273.
- Altmayer S, Nazarian S, Han Y. Left ventricular dysfunction in arrhythmogenic right ventricular cardiomyopathy (ARVC): Can we separate ARVC from other arrhythmogenic cardiomyopathies? J Am Heart Assoc. 2020; 9(23): e018866, doi: 10.1161/JAHA.120.018866, indexed in Pubmed: 33222587.
- Arbelo E, Protonotarios A, Gimeno JR, et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J. 2023; 44(37): 3503–3626, doi: 10.1093/eurheartj/ehad194, indexed in Pubmed: 37622657.
- Haugaa KH, Haland TF, Leren IS, et al. Arrhythmogenic right ventricular cardiomyopathy, clinical manifestations, and diagnosis. Europace. 2016; 18(7): 965– 972, doi: 10.1093/europace/euv340, indexed in Pubmed: 26498164.
- Casian M, Papadakis M, Jurcut R. Arrhythmogenic right ventricular cardiomyopathies (ARVC): Diagnostic challenges from imaging to genetics. Pol Heart J. 2024 [Epub ahead of print], doi: 10.33963/v.phj.102391, indexed in Pubmed: 39240923.
- Krahn AD, Wilde AAM, Calkins H, et al. Arrhythmogenic right ventricular cardiomyopathy. JACC: Clin Electrophysiol. 2022; 8(4): 533–553, doi: 10.1016/j.jacep.2021.12.002, indexed in Pubmed: 35450611.

- Basso C, Corrado D, Marcus F, et al. Arrhythmogenic right ventricular cardiomyopathy. Lancet. 2009; 373(9671): 1289–1300, doi: 10.1016/s0140-6736(09)60256-7, indexed in Pubmed: 19362677.
- Corrado D, Basso C, Thiene G. Arrhythmogenic right ventricular cardiomyopathy: An update. Heart. 2009; 95(9): 766–773, doi: 10.1136/hrt.2008.149823, indexed in Pubmed: 19366719.
- Corrado D, Basso C, Judge DP. Arrhythmogenic cardiomyopathy. Circ Res. 2017;
 121(7): 784–802, doi: 10.1161/CIRCRESAHA.117.309345, indexed in Pubmed: 28912183.
- Mizia-Stec K, Burchardt P, Mazurkiewicz Ł, et al. Position statement of Polish Cardiac Society experts on cardiomyopathy. Pol Heart J. 2024; 82(10): 1040–1053, doi: 10.33963/v.phj.102977, indexed in Pubmed: 39377635.
- Calkins H, Corrado D, Marcus F. Risk stratification in arrhythmogenic right ventricular cardiomyopathy. Circulation. 2017; 136(21): 2068–2082, doi: 10.1161/CIRCULATIONAHA.117.030792, indexed in Pubmed: 29158215.
- Starega-Roslan J, Krol J, Koscianska E, et al. Structural basis of microRNA length variety. Nucleic Acids Res. 2011; 39(1): 257–268, doi: 10.1093/nar/gkq727, indexed in Pubmed: 20739353.
- 14. Du T, Zamore PD. Beginning to understand microRNA function. Cell Res. 2007; 17(8): 661–663, doi: 10.1038/cr.2007.67, indexed in Pubmed: 17694094.
- Moreno-Moya JM, Vilella F, Simón C. MicroRNA: Key gene expression regulators. Fertil Steril. 2014; 101(6): 1516–1523, doi: 10.1016/j.fertnstert.2013.10.042, indexed in Pubmed: 24314918.
- 16. Kuosmanen SM, Hartikainen J, Hippeläinen M, et al. MicroRNA profiling of pericardial fluid samples from patients with heart failure. PLoS One. 2015; 10(3): e0119646, doi: 10.1371/journal.pone.0119646, indexed in Pubmed: 25763857.
- Layne TR, Green RA, Lewis CA, et al. microRNA detection in blood, urine, semen, and saliva stains after compromising treatments. J Forensic Sci. 2019; 64(6): 1831–1837, doi: 10.1111/1556-4029.14113, indexed in Pubmed: 31184791.
- Grodzka O, Procyk G, Gąsecka A. The role of MicroRNAs in myocarditis what can we learn from clinical trials? Int J Mol Sci. 2022; 23(24), doi: 10.3390/ijms232416022, indexed in Pubmed: 36555663.

- Grodzka O, Procyk G, Wrzosek M. A narrative review of preclinical in vitro studies investigating microRNAs in myocarditis. Curr Issues Mol Biol. 2024; 46(2): 1413– 1423, doi: 10.3390/cimb46020091, indexed in Pubmed: 38392209.
- 20. Krauze A, Procyk G, Gąsecka A, et al. The role of microRNAs in aortic stenosis-lessons from recent clinical research studies. Int J Mol Sci. 2023; 24(17), doi: 10.3390/ijms241713095, indexed in Pubmed: 37685901.
- 21. Procyk G, Grodzka O, Procyk M, et al. MicroRNAs in myocarditis-review of the preclinical in vivo trials. Biomedicines. 2023; 11(10): 2723, doi: 10.3390/biomedicines11102723, indexed in Pubmed: 37893097.
- 22. Kiełbowski K, Bakinowska E, Procyk G, et al. The role of microRNA in the pathogenesis of Duchenne muscular dystrophy. Int J Mol Sci. 2024; 25(11): 6108, doi: 10.3390/ijms25116108, indexed in Pubmed: 38892293.
- 23. Grodzka O, Słyk S, Domitrz I. The role of microRNA in migraine: A systemic literature review. Cell Mol Neurobiol. 2023; 43(7): 3315–3327, doi: 10.1007/s10571-023-01387-9, indexed in Pubmed: 37432603.
- 24. Procyk G, Klimczak-Tomaniak D, Sygitowicz G, et al. Circulating and platelet micrornas in cardiovascular risk assessment and antiplatelet therapy monitoring. J Clin Med. 2022; 11(7): 1763, doi: 10.3390/jcm11071763, indexed in Pubmed: 35407371.
- 25. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021(372): n71, doi: 10.1136/bmj.n71, indexed in Pubmed: 33782057.
- 26. GA Wells BS, D O'Connell, J Peterson, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.
- Mazurek SR, Calway T, Harmon C, et al. MicroRNA-130a regulation of desmocollin 2 in a novel model of arrhythmogenic cardiomyopathy. Microrna. 2017; 6(2): 143–150, doi: 10.2174/2211536605666161109111031, indexed in Pubmed: 27834139.
- 28. Rainer J, Meraviglia V, Blankenburg H, et al. The arrhythmogenic cardiomyopathyspecific coding and non-coding transcriptome in human cardiac stromal cells. BMC Genomics. 2018; 19(1): 491, doi: 10.1186/s12864-018-4876-6, indexed in Pubmed: 29940860.
- 29. Calore M, Lorenzon A, Vitiello L, et al. A novel murine model for arrhythmogenic cardiomyopathy points to a pathogenic role of Wnt signalling and miRNA dysregulation. Cardiovasc Res. 2019; 115(4): 739–751, doi: 10.1093/cvr/cvy253, indexed in Pubmed: 30304392.

- 30. Khudiakov AA, Smolina NA, Perepelina KI, et al. Extracellular microRNAs and mitochondrial DNA as potential biomarkers of arrhythmogenic cardiomyopathy. Biochemistry (Mosc). 2019; 84(3): 272–282, doi: 10.1134/S000629791903009X, indexed in Pubmed: 31221065.
- 31. Zhang H, Liu S, Dong T, et al. Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy. Sci Rep. 2016; 6: 28101, doi: 10.1038/srep28101, indexed in Pubmed: 27307080.
- 32. Sommariva E, D'Alessandra Y, Farina FM, et al. MiR-320a as a potential novel circulating biomarker of arrhythmogenic cardiomyopathy. Sci Rep. 2017; 7(1): 4802, doi: 10.1038/s41598-017-05001-z, indexed in Pubmed: 28684747.
- Yamada S, Hsiao YW, Chang SL, et al. Circulating microRNAs in arrhythmogenic right ventricular cardiomyopathy with ventricular arrhythmia. Europace. 2018; 20(FI1): f37– f45, doi: 10.1093/europace/eux289, indexed in Pubmed: 29036525.
- Bueno Marinas M, Celeghin R, Cason M, et al. A microRNA expression profile as noninvasive biomarker in a large arrhythmogenic cardiomyopathy cohort. Int J Mol Sci. 2020; 21(4): 1536, doi: 10.3390/ijms21041536, indexed in Pubmed: 32102357.
- 35. Khudiakov AA, Panshin DD, Fomicheva YV, et al. Different expressions of pericardial fluid micrornas in patients with arrhythmogenic right ventricular cardiomyopathy and ischemic heart disease undergoing ventricular tachycardia ablation. Front Cardiovasc Med. 2021; 8: 647812, doi: 10.3389/fcvm.2021.647812, indexed in Pubmed: 33816578.
- Sacchetto C, Mohseni Z, Colpaert RMW, et al. Circulating miR-185-5p as a potential biomarker for arrhythmogenic right ventricular cardiomyopathy. Cells. 2021; 10(10): 2578, doi: 10.3390/cells10102578, indexed in Pubmed: 34685557.
- Bonet F, Campuzano O, Córdoba-Caballero J, et al. Role of miRNA-mRNA interactome in pathophysiology of arrhythmogenic cardiomyopathy. Biomedicines. 2024; 12(8): 1807, doi: 10.3390/biomedicines12081807, indexed in Pubmed: 39200271.
- 38. Lu W, Li Y, Dai Y, et al. Dominant myocardial fibrosis and complex immune microenvironment jointly shape the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Front Cardiovasc Med. 2022; 9: 900810, doi: 10.3389/fcvm.2022.900810, indexed in Pubmed: 35845067.
- 39. Li H, Song S, Shi A, et al. Identification of potential lncRNA-miRNA-mRNA regulatory network contributing to arrhythmogenic right ventricular cardiomyopathy. J Cardiovasc Dev Dis. 2024; 11(6): 168, doi: 10.3390/jcdd11060168, indexed in Pubmed: 38921668.

Re	Yea	Population	Comparison	miRNA	Methodolo	Study	Outcome
f.	r				gy	desig	
						n	
[27	201	17 transgenic	14 control	miR-	Mice	Anim	Right
]	7	mice	littermate	130a	examined	al	ventricular
		overexpressin	mice		with TTE	model	dilation in
		g miR-130a			and surface	study	mice
					ECG		overexpressi
							ng miR-130a
							the presence
							of PVCs in
							mice
							overexpressi
							ng miR-130a
							$(11.52 \pm$
							5.36
							PVC/min)
							and no PVCs
							in control
							mice
[28	201	CStCs	CStCs	miR-	miRNA in	In	↑ miR-29b-
]	8	derived from	derived from	520c-3p,	CStCs by	vitro	3p in CStCs
		8 ARVC pts	5 HCs	miR-	qRT-PCR	study	derived from
				29b-3p,			ARVC pts
				miR-			
				1183			
[29	201	5 Tg-hQ13	5 Tg-hWT40	Real-	miRNA in	Anim	24 miRNAs
]	9	mice	5 non-	time	heart tissue	al	altered in
			transgenic	PCR	by Illumina	model	Tg-hQ13
			mice		HiSeq 2000	study	compared to

Table 1. Summary of preclinical research evaluating the role of miRNAs in ARVC.

				validatio	platform		non-
				n:	and real-		transgenic
				miR-	time PCR		mice (18
				499-5p,			upregulated
				miR-			and 6
				216a-5p,			downregulat
				miR-			ed)
				217-5p,			↑ miR-217-
				miR-			5p, miR-
				708-5p			708-5p and ↓
							miR-499-5p
							in Tg-hQ13
							mice
							compared to
							both Tg-
							hWT40 and
							non-
							transgenic
							mice
							↑ miR-216a-
							5p in Tg-
							hQ13 mice
							compared to
							non-
							transgenic
							mice (but
							not when
							compared to
							Tg-hWT40)
[30	201	Cardiomyocy	Cardiomyocy	miR-1,	Extracellul	In	↑ miR-1,
]	9	tes derived	tes derived	miR-21,	ar and	vitro	miR-21,
		from iPSC	from iPSC	miR-	intracellula	study	miR-133a,
				29b-2,			miR-208a,

	lines from	lines from	miR-	r miRNA	miR-378a,
	ARVC pt	HCs	30c,	by qPCR	and miR-494
			miR-		in the
			133a,		supernatant
			miR-		compared to
			208a,		the
			miR-		precipitate
			378a,		fraction
			miR-494		↑ miR-21,
					miR-29b-2,
					and miR-
					378a in the
					supernatant
					fraction from
					the ARVC
					cells
					compared to
					the
					supernatant
					fraction from
					the HC cells
					\uparrow miR-1 and
					miR-133a in
					the
					supernatant
					and
					precipitate
					fractions
					from ARVC
					cells
					compared to
					the
					correspondin

			g fractions
			from the HC
			cells
			no difference
			in the
			intracellular
			levels of
			miR-1, miR-
			21, miR-
			29b-2, miR-
			133a, and
			miR-378a
			between the
			ARVC cells
			and the HC
	 		cells

Abbreviations: \uparrow , increased; ARVC, arrhythmogenic right ventricular cardiomyopathy; CStCs, cardiac stromal cells; ECG, electrocardiogram; HCs, healthy controls; iPSC, induced pluripotent stem cell; miR/miRNA, microRNA; pts, patients; qRT-PCR, quantitative reverse transcription-polymerase chain reaction; ref., reference; RNA, ribonucleic acid; TTE, transthoracic echocardiography

Re	Yea	Populati	Comparison	miRNA	Methodolo	Stud	Outcome
f.	r	on			gy	У	
						desig	
						n	

Table 2. Summary of clinical patient-based research assessing the role of miRNAs in ARVC.

[31	201	24	24 HCs	1078	miRNA in	Case-	AUC value for
]	6	ARVC	(autopsies or	various	heart	contr	differentiating
		pts	donors w/o	human	samples by	ol	ARVC from
		undergoi	heart disease)	microRN	S-Poly(T)	study	HCs was
		ng HTx		As	Plus		presented in []
					method		below:
							↑ miR-21-3p
							[0.936], miR-
							21-5p [0.944],
							miR-34a-5p
							[0.819], miR-
							212-3p [0.910],
							miR-216a
							[0.798], miR-
							584-3p [0.781],
							miR-1251
							[0.978], miR-
							3621 [0.849],
							miR-3674
							[0.585], miR-
							3692-3p
							[0.861], miR-
							4286 [0.778],
							miR-4301
							[0.799] in
							ARVC pts
							↓ miR-135b
							[0.936], miR-
							138-5p [0.758],
							miR-193b-3p
							[0.946], miR-
							302b-3p
							[0.991], miR-

							302c-3p
							[0.992], miR-
							338-3p [0.970],
							miR-451a
							[0.653], miR-
							491-3p [0.837],
							miR-575
							[0.922], miR-
							4254 [0.838],
							miR-4643
							[0.966] in
							ARVC pts
[32	201	36	53 HCs	377	miRNA in	Case-	↓ miR-302a in
]	7	ARVC	21 IVT pts	various	plasma by	contr	ARCV pts
		pts		miRNAs	microarray	ol	compared to
				in	s and RT-	study	HCs
				screening	qPCR		↓ miR-302a in
				RT-qPCR			ARCV pts
				validatio			compared to
				n: miR-			IVT pts
				223,			ROC analysis
				miR-320,			of miR-302a in
				miR-483-			ARVC vs IVT
				5p, miR-			pts: AUC =
				126,			0.69
				miR-301			no correlation
							between miR-
							302a and
							ARVC severity

[33	201	28	11	84	miRNA in	Case-	↑ miR-144-3p,
]	8	definite	borderline/poss	cardiac-	plasma by	contr	miR-145-5p,
		ARVC	ible ARVC pts	related	microarray	ol	miR-185-5p,
		pts	23 IVT pts	miRNAs	s and real-	study	and miR-494 in
			33 HCs	in	time PCR		definite ARVC
				screening			pts compared
				real-time			to other groups
				PCR			ROC analysis
				validatio			definite ARVC
				n: hsa-			vs IVT +
				let-7e,			borderline/poss
				miR-122-			ible ARVC pts:
				5p, miR-			miR-144-3p:
				144-3p,			AUC = 0.728,
				miR-145-			miR-145-5p:
				5p, miR-			AUC = 0.619,
				185-5p,			miR-185-5p:
				miR-195-			AUC = 0.740,
				5p, miR-			and miR-494:
				494,			AUC = 0.891
				miR-107,			↑ miR-494 in
				miR-142-			definite ARVC
				3p, miR-			pts with
				150-5p,			recurrent VA
				miR-			after ablation
				378a-3p			compared to
							definite ARVC
							pts w/o
							recurrence,
							miR-494 as a
							predictor of
							VA recurrence:
							AUC = 0.832

[34	202	90	20 HCs	Real-time	miRNA in	Case-	↑ miR-122-5p,
]	0	ARVC	17 non-affected	PCR	heart tissue	contr	miR-182-5p,
		pts	family	validatio	and whole	ol	miR-183-5p,
			members of	n:	blood by	study	and \downarrow miR-
			ARVC	miR-21-	microarray		133a-3p, miR-
			probands	5p, miR-	s, RNA-		133b, miR-
			carrying a	122-5p,	seq, and		142-3p in
			desmosomal	miR-	qPCR		ARVC pts
			pathogenic	133a-3p,			compared to
			variant (ARVC	miR-			HCs
			gen+phen-)	133b,			ROC analysis
			20 HCM pts	miR-142-			(AUC) for
			20 DCM pts	3p, miR-			ARVC pts vs
			13 BrS pts	144-3p,			HCs:
			13 myocarditis	miR-149-			miR-122-5p
			pts	5p, miR-			(0.9146), miR-
				182-5p,			133a-3p
				miR-183-			(0.845), miR-
				5p, miR-			133b (0.858),
				184,			miR-142-3p
				miR-			(0.9692), miR-
				208a-3p,			182-5p
				miR-			(0.7371), miR-
				320a,			183-5p (0.707)
				miR-494-			ROC analysis
				3p,			(AUC) for 6-
							miRNA panel
							ARVC pts vs:
							HCs (0.995),
							HCM pts
							(0.804), DCM
							pts (0.917),
							ARVC

							gen+phen–
							(0.825), BrS
							pts (0.981),
							myocarditis
							(0.978)
[35	202	6 ARVC	3 post-	145–411	miRNA in	Case-	RNA-seq: ↑
]	1	pts	infarction VT	microRN	pericardial	contr	miR-122-5p,
			pts	As per	fluid by	ol	miR-206, miR-
				sample in	small	study	1-3p and ↓
				RNA-seq	RNA-seq		miR-3679-5p,
				qPCR	and qPCR		miR-21-5p in
				validatio			ARVC pts
				n:			compared to
				miR-1-			post-infarction
				3p, miR-			VT pts
				21-5p,			correlation
				miR-122-			between RNA-
				5p, miR-			seq and qPCR
				206,			for miR-1-3p,
				miR-			miR-21-5p,
				3679-5p			miR-122-5p,
							and
							inconsistency
							for miR-206,
							miR-3679-5p

[36	202	37	30 HCs	754	miRNA in	Case-	↓ miR-20b and
]	1	ARVC		miRNAs	plasma by	contr	↑ miR-185-5p
		pts		in a pilot	microarray	ol	in ARVC pts
				study by	s and	study	compared to
				microarra	qPCR		HCs
				У			ROC analysis
				5 miRNA			of miR-185-5p
				in qPCR			in ARVC vs
				validatio			HCs: AUC =
				n:			0.854
				miR-505,			
				miR-20b,			
				miR-590-			
				5p, miR-			
				520c-3p,			
				miR-185-			
				5p			
[37	202	4 definite	4 unrelated	Small	miRNA	Case-	↑ miR-135a-
]	4	ARVC	ARVC subjects	RNA-seq	libraries in	contr	5p, miR-140-
		pts	who died from	analysis	RV	ol	3p, miR-145-
			other		myocardial	study	5p, and ↓ miR-
			conditions than		samples by		486-5p, miR-
			cardiac disease		NEXTFLE		486-3p, miR-
					X small		125a-5p, let-
					RNA-seq		7e-5p, let-7d-
					kit v3		3p in definite
							ARVC pts
							compared to
							controls

Abbreviations: ↑, increased; ↓, decreased; ARVC, arrhythmogenic right ventricular cardiomyopathy; AUC, area under the ROC curve; BrS, Brugada Syndrome; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; HCs, healthy controls; HTx, heart transplantation; IVT, idiopathic ventricular tachyarrhythmia; pts, patients; qRT-PCR, quantitative reverse transcription-polymerase chain reaction; ref., reference; RNA, ribonucleic acid; ROC, receiver operating characteristic; RV, right ventricle; VA, ventricular arrhythmia; VT, ventricular tachycardia; w/o—without.

Ref	Yea	Populati	Comparis	miPNA	Methodolo	Study	Outcomo
•	r	on	on		gy	design	Outcome
[38]	202 2	15 ARVC pts	11 HCs	the interacted miRNAs of IncRNAs and mRNAs searched in the RNAinter database	RNA-seq in ventricular myocardiu m data from the GEO database	bioinforma tic analysis	198 differentiall y expressed lncRNAs between ARVC pts and HCs 934 lncRNA- mRNA pairs among which 258 pairs with significant miRNA overlaps top-3 miRNAs from lncRNA- miRNAs from lncRNA- miRNA overlaps

Table 3. Summary of bioinformatic analyses investigating the role of miRNAs in ARVC.

186-5p, miR-15a-5p

							miRNA-
							mRNA
							network: 12
							downregulat
							ed miRNAs
							targeting 17
							upregulated
							mRNAs and
							8
							upregulated
				lncRNA-	GEO		miRNAs
				miRNA-	database,		targeting 55
[39	202	27 ARVC	17 110-	mRNA	results from	bioinforma	downregulat
]	4	pts	1/HCS	network	Bueno	tic analysis	ed mRNAs
				constructi	Marinas		let-7b, miR-
				on	[34]		10b-5p,
							miR-21-5p,
							miR-29-b-
							3p, miR-
							122-5p,
							miR-144-
							3p, miR-
							149-5p,
							miR-182-
							5p, miR-
							320a, miR-

494-3p included in the IncRNAmiRNAmRNA network

Abbreviations: ARVC, arrhythmogenic right ventricular cardiomyopathy; GEO, Gene Expression Omnibus; HCs, healthy controls; lncRNAs, long non-coding RNAs; miR/miRNA, microRNA; mRNAs, messenger RNAs; pts, patients; ref., reference; RNA, ribonucleic acid.

Table 4. Top 3 predicted target genes (based on https://mirdb.org) of all miRNAs altered in arrhythmogenic right ventricular cardiomyopathy. Bolded miRNAs are mice miRNAs; all others are human

miRNA	Top 3 predicted targets		
miR_1_3n	3-hydroxyacyl-CoA dehydratase 3, monocyte to macrophage differentiation associated, solute		
mix-1-5p	carrier family 44 member 1		
miP 10h 5n	Cell adhesion molecule 2, transcription factor AP-2 gamma, CCR4-NOT transcription complex		
шк-100-5р	subunit 6		
miR-15a-5p	Pappalysin 1, fatty acid synthase, unc-80 homolog, NALCN channel complex subunit		
miR-20b	Ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative), FYVE and coiled-coil domain		
1111K-200	containing 1, dynein cytoplasmic 1 light intermediate chain 2		
miR-21-3p	Serine/threonine kinase 38 like, protocadherin 19, TSC22 domain family member 2		
miR-21-5p	YOD1 deubiquitinase, PR/SET domain 11, Fas ligand		
miR-29h-2	POU class 2 homeobox 2, leucine rich repeat transmembrane neuronal 2, WNK lysine deficient		
	protein kinase 1		
miR-29b-3p	Collagen type V alpha 3 chain, collagen type V alpha 1 chain, tet methylcytosine dioxygenase 1		
miR-34a-5p	Hyperpolarization activated cyclic nucleotide gated potassium channel 3, family with sequence		
	similarity 76 member A, MDM4, p53 regulator		

	Heterogeneous nuclear ribonucleoprotein U, cytoplasmic polyadenylation element binding				
mik-122-5p	protein 1, CD40 ligand				
miB 1250 5n	StAR related lipid transfer domain containing 13, FRAS1 related extracellular matrix 1, protein				
шк-125а-эр	phosphatase 4 regulatory subunit 3A				
mi P_130 0	SKI/DACH domain containing 1, myeloblastosis oncogene-like 1, phosphatidylinositol-4,5-				
IIIK-150a	bisphosphate 3-kinase catalytic subunit beta				
miP 1330 3p	BicC family RNA binding protein 1, mastermind like transcriptional coactivator 1,				
шк-155а-5р	polypyrimidine tract binding protein 1				
miR_133b	BicC family RNA binding protein 1, LHFPL tetraspan subfamily member 6, polypyrimidine				
IIIIX-1550	tract binding protein 1				
miR-135a-5p	Leucine zipper tumor suppressor 1, synaptotagmin 2, small integral membrane protein 13				
miR-135b	Leucine zipper tumor suppressor 1, synaptotagmin 2, small integral membrane protein 13				
miP 138 5n	V-set and transmembrane domain containing 2 like, UPF2, regulator of nonsense mediated				
шк-138-эр	mRNA decay, required for meiotic nuclear division 5 homolog A				
miR-140-3p	Iduronate 2-sulfatase, ADAM metallopeptidase domain 10, activin A receptor type 2B				
miR_1/12_3n	Zinc finger E-box binding homeobox 2, transcription activation suppressor family member 2,				
mm-1+2-5p	RPTOR independent companion of MTOR complex 2				
miR_1/1/_3n	Ubiquitin conjugating enzyme E2 D1, transportin 1, gamma-aminobutyric acid type A receptor				
mix-144-5p	alpha1 subunit				
miR_1/15_5n	Fascin actin-bundling protein 1, abhydrolase domain containing 17C, Fli-1 proto-oncogene,				
mm-145-5p	ETS transcription factor				
miR-149-5n	Cache domain containing 1, elongator acetyltransferase complex subunit 5, VPS53, GARP				
1111 149 5p	complex subunit				
miR-182-5n	Protein kinase cAMP-activated catalytic subunit beta, regulator of G protein signaling 17,				
102 Sp	basonuclin 2				
miR_183_5n	Profilin 2, myocyte enhancer factor 2C, potassium two pore domain channel subfamily K				
105 Sp	member 10				
miR-185-5n	SMG7, nonsense mediated mRNA decay factor, solute carrier family 16 member 2, suppressor				
1111 105 Sp	of glucose, autophagy associated 1				
miR_186_5n	RUN and FYVE domain containing 3, zinc finger CCCH-type containing 11A, zinc finger				
100 Sp	protein 644				
miR-193h-3n	Mitogen-activated protein kinase 10, phosphatidylinositol glycan anchor biosynthesis class A,				
1111-1750-5p	DDB1 and CUL4 associated factor 7				

miD 206	3-hydroxyacyl-CoA dehydratase 3monocyte to macrophage differentiation associated solute				
IIIIK-200	carrier family 44 member 1				
miR-208a	208a Stanniocalcin 1, receptor accessory protein 1, EYA transcriptional coactivator and phospha				
miR_212_3n	Cyclin dependent kinase 19, translocase of inner mitochondrial membrane 9, LEM domain				
шк-212-эр	containing 3				
miR_2169_5n	Zinc finger and BTB domain containing 2, synovial sarcoma, X 2 interacting protein, mitogen-				
mix-210a-5p	activated protein kinase 1 interacting protein 1-like				
miR_217_5n	Enhancer of zeste 2 polycomb repressive complex 2 subunit, TPase, Na+/K+ transporting, beta				
шк-217-эр	1 polypeptide, glycoprotein m6a				
miR-302a	YOD1 deubiquitinase, large tumor suppressor kinase 2, carnitine O-octanoyltransferase				
miR-302b-3p	YOD1 deubiquitinase, large tumor suppressor kinase 2, carnitine O-octanoyltransferase				
miR-302c-3p	YOD1 deubiquitinase, large tumor suppressor kinase 2, carnitine O-octanoyltransferase				
miR-320a	YOD1 deubiquitinase, cyclin dependent kinase like 5, one cut homeobox 2				
miR-338-3p	Cbl proto-oncogene, galectin like, RAB14, member RAS oncogene family				
mi R -378a	Kallikrein related peptidase 4, nuclear receptor subfamily 2 group C member 2, NK3 homeobox				
1111 X- 576a	1				
miR-451a	Odd-skipped related transcription factor 1, cut like homeobox 2, proteasome subunit beta 8				
miR-486-3p	Retrotransposon Gag like 5, coiled-coil domain containing 97, phospholipase C beta 1				
miR-486-5n	B-TFIID TATA-box binding protein associated factor 1, small nuclear ribonucleoprotein D1				
1111 X 400 5p	polypeptide, small nuclear ribonucleoprotein D1 polypeptide				
miR-491-3p	Ubiquitin conjugating enzyme E2 D3, protocadherin 7, solute carrier family 5 member 7				
miR-494-3n	Family with sequence similarity 169 member A, solute carrier family 1 member 2, ArfGAP with				
1111X +7+ 5p	GTPase domain, ankyrin repeat and PH domain 1				
miR-499-5n	Post-GPI attachment to proteins 1, myelin basic protein expression factor 2, repressor, SRY (sex				
	determining region Y)-box 6				
miR-575	NudE neurodevelopment protein 1 like 1, DENN domain containing 5A, DENN domain				
	containing 5A				
miR-584-3n	Coiled-coil glutamate rich protein 1, ELK3, ETS transcription factor, CCR4-NOT transcription				
	complex subunit 2				
miR-590-3n	3'(2'), 5'-bisphosphate nucleotidase 1, listerin E3 ubiquitin protein ligase 1, zinc finger DHHC-				
	type containing 21				
miR-708-5n	SNF2 histone linker PHD RING helicase, RIKEN cDNA 4931406P16 gene, vaccinia related				
	kinase 3				

miB 1251	Zinc finger protein 99, dual specificity tyrosine phosphorylation regulated kinase 1A,				
IIIIK-1231	centrosomal protein 350				
miR-3621	Ubiquitin specific peptidase 19, chromosome 4 open reading frame 19, zinc finger protein 484				
miR-3674	Zinc finger CCHC-type containing 14, claudin 4, microtubule associated protein 10				
miP 3670 5p	Monoamine oxidase B, basal cell adhesion molecule (Lutheran blood group), CD2 associated				
IIIK-3079-5p	protein				
miR-3692-3p	Zinc finger protein 773, ZFP1 zinc finger protein, zinc finger protein 189				
miP 4254	KH and NYN domain containing,SPOUT domain containing methyltransferase 1,SEL1L,				
1111X-4234	ERAD E3 ligase adaptor subunit				
miR-4286	Zinc finger and BTB domain containing 7B, mannosidase alpha class 2A member 2,				
111 1 (-4200	ssemaphorin 4F				
miR-4301	Lymphoid enhancer binding factor 1, transportin 1, caprin family member 2				
miR-4643	Suppressor of cytokine signaling 6, solute carrier family 6 member 19, RAB6B, member RAS				
1111(-+0+3	oncogene family				
let-7b	StAR related lipid transfer domain containing 13, high mobility group AT-hook 2,				
	immunoglobulin superfamily DCC subclass member 3				
let-7d-3p	Mex-3 RNA binding family member C, BEN domain containing 2, prostaglandin I2 synthase				
let-7e-5p	StAR related lipid transfer domain containing 13, high mobility group AT-hook 2,				
10t-70-5p	immunoglobulin superfamily DCC subclass member 3				

Figure 1. The flowchart for the selection process

Abbreviations: n, number of studies

Figure 2. A central figure summarizing the role of microRNAs in arrhythmogenic right ventricular cardiomyopathy

Abbreviations: ↑, increased; ↓, decreased; ARVC, arrhythmogenic right ventricular cardiomyopathy; HCs, healthy controls; iPSC, induced pluripotent stem cell; IVT, idiopathic ventricular tachyarrhythmia; lncRNAs, long non-coding RNAs; miR/miRNA, microRNA; mRNAs, messenger RNAs; VT, ventricular tachycardia