How to assess sudden cardiac death risk in hypertrophic cardiomyopathy? Current challenges and future directions
Abstract
Over the past decade, knowledge about the risk of sudden cardiac death (SCD) in patients with hypertrophic cardiomyopathy (HCM) has advanced significantly. A standard well-recognized approach to risk stratification is based on the fundamental risk factors and SCD risk models that should be incorporated into the shared decision-making process. More detailed analysis including additional indicators, such as reduced left ventricular systolic function, the presence of late gadolinium enhancement, or in some cases genetic variants, may provide valuable insights for intermediate-risk patients, enabling more personalized diagnosis and treatment. Risk stratification remains challenging in specific groups, such as patients who have undergone septal reduction therapy, those taking mavacamten, or those with phenocopies of HCM. The advancement of modern methodologies, including multifactorial approaches supported by artificial intelligence algorithms, offers hope for more precise and individualized SCD risk assessment in HCM patients.
Keywords: artificial intelligencehypertrophic cardiomyopathypredictionrisksudden cardiac death
References
- Maron BJ, Olivotto I, Spirito P, et al. Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation. 2000; 102(8): 858–864.
- Fananapazir L, Epstein ND. Prevalence of hypertrophic cardiomyopathy and limitations of screening methods. Circulation. 1995; 92(4): 700–704.
- Mizia-Stec K, Burchardt P, Mazurkiewicz Ł, et al. Position statement of Polish Cardiac Society experts on cardiomyopathy. Pol Heart J. 2024; 82(10): 1040–1053.
- Butzner M, Maron M, Sarocco P, et al. Clinical diagnosis of hypertrophic cardiomyopathy over time in the United States (A population-based claims analysis). Am J Cardiol. 2021; 159: 107–112.
- Zou Y, Song L, Wang Z, et al. Prevalence of idiopathic hypertrophic cardiomyopathy in China: A population-based echocardiographic analysis of 8080 adults. Am J Med. 2004; 116(1): 14–18.
- Semsarian C, Ingles J, Maron MS, et al. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015; 65(12): 1249–1254.
- Weissler-Snir A, Allan K, Cunningham K, et al. Hypertrophic cardiomyopathy-related sudden cardiac death in young people in Ontario. Circulation. 2019; 140(21): 1706–1716.
- Norrish G, Ding T, Field E, et al. Development of a novel risk prediction model for sudden cardiac death in childhood hypertrophic cardiomyopathy (HCM Risk-Kids). JAMA Cardiol. 2019; 4(9): 918–927.
- Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011; 124(24): 2761–2796.
- Vriesendorp PA, Schinkel AF, Liebregts M, et al. Validation of the 2014 ESC guidelines risk prediction model for the primary prevention of sudden cardiac death in hypertrophic cardiomyopathy. Circ Arrhythm Electrophysiol. 2015; 8(4): 829–835.
- Hong Y, Su WW, Li X. Risk factors of sudden cardiac death in hypertrophic cardiomyopathy. Curr Opin Cardiol. 2022; 37(1): 15–21.
- Maron BJ, Rowin EJ, Casey SA, et al. Hypertrophic cardiomyopathy in Adulthood associated with low cardiovascular mortality with contemporary management strategies. J Am Coll Cardiol. 2015; 65(18): 1915–1928.
- Link MS, Bockstall K, Weinstock J, et al. Ventricular tachyarrhythmias in patients with hypertrophic cardiomyopathy and defibrillators: Triggers, treatment, and implications. J Cardiovasc Electrophysiol. 2017; 28(5): 531–537.
- Hocini M, Ramirez FD, Szumowski Ł, et al. Purkinje triggers of ventricular fibrillation in patients with hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2021; 32(11): 2987–2994.
- Siontis KC, Ommen SR, Geske JB. Art and science of risk stratification of sudden cardiac death in hypertrophic cardiomyopathy: Current state, unknowns, and future directions. Prog Cardiovasc Dis. 2023; 80: 25–31.
- Maron MS, Rowin EJ, Wessler BS, et al. Enhanced American College of Cardiology/American Heart Association strategy for prevention of sudden cardiac death in high-risk patients with hypertrophic cardiomyopathy. JAMA Cardiol. 2019; 4(7): 644–657.
- O'Mahony C, Akhtar MM, Anastasiou Z, et al. Effectiveness of the 2014 European Society of Cardiology guideline on sudden cardiac death in hypertrophic cardiomyopathy: A systematic review and meta-analysis. Heart. 2019; 105(8): 623–631.
- Priori SG, Blomström-Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015; 36(41): 2793–2867.
- Desai MY, Owens A, Geske JB, et al. Myosin inhibition in patients with obstructive hypertrophic cardiomyopathy referred for septal reduction therapy. J Am Coll Cardiol. 2022; 80(2): 95–108.
- Elena A, Protonotarios A, Gimeno JR, et al. 2023 ESC guidelines for the management of cardiomyopathies. Eur Heart J. 2023; 44(37): 3503–3626.
- Ommen S, Ho C, Asif I, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR guideline for the management of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2024; 83(23): 2324–2405.
- Lorenzini M, Anastasiou Z, O'Mahony C, et al. Mortality among referral patients with hypertrophic cardiomyopathy vs the general European population. JAMA Cardiol. 2020; 5(1): 73–80.
- Nguyen A, Schaff HV, Nishimura RA, et al. Survival after myectomy for obstructive hypertrophic cardiomyopathy: What causes late mortality? Ann Thorac Surg. 2019; 108(3): 723–729.
- Desai MY, Smedira NG, Dhillon A, et al. Prediction of sudden death risk in obstructive hypertrophic cardiomyopathy: Potential for refinement of current criteria. J Thorac Cardiovasc Surg. 2018; 156(2): 750–759.e3.
- McLeod CJ, Ommen SR, Ackerman MJ, et al. Surgical septal myectomy decreases the risk for appropriate implantable cardioverter defibrillator discharge in obstructive hypertrophic cardiomyopathy. Eur Heart J. 2007; 28(21): 2583–2588.
- Olivotto I, Oreziak A, Barriales-Villa R, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020; 396(10253): 759–769.
- Maron MS, Masri A, Choudhury L, et al. Phase 2 study of aficamten in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2023; 81(1): 34–45.
- Maurizi N, Antiochos P, Owens A, et al. Long-term outcomes after septal reduction therapies in obstructive hypertrophic cardiomyopathy: insights from the SHARE registry. Circulation. 2024; 150(17): 1377–1390.
- Ho CY, Day SM, Ashley EA, et al. SHaRe Investigators. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: Insights from the sarcomeric human cardiomyopathy registry (SHaRe). Circulation. 2018; 138(14): 1387–1398.
- Rowin EJ, Burrows A, Madias C, et al. Long-term outcome in high-risk patients with hypertrophic cardiomyopathy after primary prevention defibrillator implants. Circ Arrhythm Electrophysiol. 2020; 13(10): e008123.
- Canepa M, Fumagalli C, Tini G, et al. Temporal trend of age at diagnosis in hypertrophic cardiomyopathy: An analysis of the international sarcomeric human cardiomyopathy registry. Circ Heart Fail. 2020; 13(9): e007230.
- Alashi A, Smedira NG, Popovic ZB, et al. Characteristics and outcomes of elderly patients with hypertrophic cardiomyopathy. J Am Heart Assoc. 2021; 10(3): e018527.
- Nugent AW, Daubeney PEF, Chondros P, et al. Clinical features and outcomes of childhood hypertrophic cardiomyopathy: Results from a national population-based study. Circulation. 2005; 112(9): 1332–1338.
- Colan SD, Lipshultz SE, Lowe AM, et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation. 2007; 115(6): 773–781.
- McKenna WJ, Franklin RC, Nihoyannopoulos P, et al. Arrhythmia and prognosis in infants, children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1988; 11(1): 147–153.
- Mital S, Armstrong KR, Butts RJ, et al. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation. 2020; 142(3): 217–229.
- McKenna WJ, Deanfield JE. Hypertrophic cardiomyopathy: An important cause of sudden death. Arch Dis Child. 1984; 59(10): 971–975.
- Marston NA, Han L, Olivotto I, et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur Heart J. 2021; 42(20): 1988–1996.
- Norrish G, Kaski JP. The risk of sudden death in children with hypertrophic cardiomyopathy. Heart Fail Clin. 2022; 18(1): 9–18.
- Norrish G, Protonotarios A, Stec M, et al. Performance of the PRIMaCY sudden death risk prediction model for childhood hypertrophic cardiomyopathy: Implications for implantable cardioverter-defibrillator decision-making. Europace. 2023; 25(11): euad330.
- Towbin JA, McKenna WJ, Abrams DJ, et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 2019; 16(11): e301–e372.
- Axelsson Raja A, Farhad H, Valente AM, et al. Prevalence and progression of late gadolinium enhancement in children and adolescents with hypertrophic cardiomyopathy. Circulation. 2018; 138(8): 782–792.
- Chan RH, van der Wal L, Liberato G, et al. Myocardial scarring and sudden cardiac death in young patients with hypertrophic cardiomyopathy. JAMA Cardiol. 2024; 9(11): 1001.
- Petryka-Mazurkiewicz J, Ziolkowska L, Kowalczyk-Domagala M, et al. LGE for risk stratification in primary prevention in children with HCM. JACC Cardiovasc Imaging. 2020; 13(12): 2684–2686.
- Liżewska-Springer A, Sławiński G, Lewicka E. Arrhythmic sudden cardiac death and the role of implantable cardioverter-defibrillator in patients with cardiac amyloidosis — a narrative literature review. J Clin Med. 2021; 10(9): 1858.
- Piccolo S, Casal M, Rossi V, et al. Ventricular arrhythmias and primary prevention of sudden cardiac death in Anderson–Fabry disease. Int J Cardiol. 2024; 415: 132444.
- Könemann H, Dagres N, Merino JL, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022; 43(40): 3997–4126.
- Vijapurapu R, Geberhiwot T, Jovanovic A, et al. Study of indications for cardiac device implantation and utilisation in Fabry cardiomyopathy. Heart. 2019; 105(23): 1825–1831.
- García-Giustiniani D, Arad M, Ortíz-Genga M, et al. Phenotype and prognostic correlations of the converter region mutations affecting the β myosin heavy chain. Heart. 2015; 101(13): 1047–1053.
- Li Y, Liu X, Yang F, et al. Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy. Eur Radiol. 2021; 31(7): 4557–4567.
- Qin Le, Min J, Chen C, et al. Incremental values of T1 mapping in the prediction of sudden cardiac death risk in hypertrophic cardiomyopathy: A comparison with two guidelines. Front Cardiovasc Med. 2021; 8: 661673.
- Avanesov M, Münch J, Weinrich J, et al. Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR. Eur Radiol. 2017; 27(12): 5136–5145.
- Xu Z, Wang J, Cheng W, et al. Incremental significance of myocardial oedema for prognosis in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2023; 24(7): 876–884.
- Yang F, Wang J, Li Y, et al. The prognostic value of biventricular long axis strain using standard cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Int J Cardiol. 2019; 294: 43–49.
- Yang F, Wang L, Wang J, et al. Prognostic value of fast semi-automated left atrial long-axis strain analysis in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2021; 23(1): 36.
- Wang J, Li Y, Yang F, et al. Fractal analysis: Prognostic value of left ventricular trabecular complexity cardiovascular MRI in participants with hypertrophic cardiomyopathy. Radiology. 2021; 298(1): 71–79.
- Magnusson P, Mörner S. EvaLuation Using Cardiac Insertable Devices And TelephonE in Hypertrophic Cardiomyopathy (ELUCIDATE HCM): A prospective observational study on incidence of arrhythmias. J Cardiovasc Electrophysiol. 2020; 32(1): 129–135.
- Gatzoulis KA, Georgopoulos S, Antoniou CK, et al. Programmed ventricular stimulation predicts arrhythmic events and survival in hypertrophic cardiomyopathy. Int J Cardiol. 2018; 254: 175–181.
- Saumarez R, Silberbauer J, Scannell J, et al. Should lethal arrhythmias in hypertrophic cardiomyopathy be predicted using non-electrophysiological methods? Europace. 2023; 25(5): 1–9.
- Fahmy AS, Neisius U, Chan RH, et al. Three-dimensional deep convolutional neural networks for automated myocardial scar quantification in hypertrophic cardiomyopathy: A multicenter multivendor study. Radiology. 2020; 294(1): 52–60.
- Wang J, Bravo L, Zhang J, et al. Radiomics analysis derived from LGE-MRI predict sudden cardiac death in participants with hypertrophic cardiomyopathy. Front Cardiovasc Med. 2021; 8: 766287.
- Meng L, Shivkumar K, Ajijola O. Autonomic regulation and ventricular arrhythmias. Curr Treat Options Cardiovasc Med. 2018; 20(5): 38.
