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A B S T R A C T 
Over the past decade, knowledge about the risk of sudden cardiac death (SCD) in patients with hy-
pertrophic cardiomyopathy (HCM) has advanced significantly. A standard well-recognized approach 
to risk stratification is based on the fundamental risk factors and SCD risk models that should be 
incorporated into the shared decision-making process. More detailed analysis including additional 
indicators, such as reduced left ventricular systolic function, the presence of late gadolinium en-
hancement, or in some cases genetic variants, may provide valuable insights for intermediate-risk 
patients, enabling more personalized diagnosis and treatment. Risk stratification remains challenging 
in specific groups, such as patients who have undergone septal reduction therapy, those taking 
mavacamten, or those with phenocopies of HCM. The advancement of modern methodologies, 
including multifactorial approaches supported by artificial intelligence algorithms, offers hope for 
more precise and individualized SCD risk assessment in  HCM patients. 
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INTRODUCTION
Hypertrophic cardiomyopathy (HCM) is an 
autosomal dominant genetic heart disease 
characterized by left ventricular (LV) hyper-
trophy and myocardial fiber disarray [1]. 
Epidemiological studies suggest that the 
incidence of HCM in the general population 
is between 1 in 200 and 1 in 500 people, with 
a male predominance [2]. HCM is diverse re-
garding the age of onset, clinical phenotype, 
and natural history. The diagnosis and man-
agement of cardiomyopathies are subject to 
regional variations, but there are only a few 
studies that have systematically evaluated 
the clinical pathways of HCM patients [3, 4]. 
Sudden cardiac death (SCD) is recognized to 
be an important cause of mortality, with a re-
ported annual incidence of 0.5-0.8% in adults 
and 1.2%–1.5% in children [5, 6]. Implantable 
cardiac defibrillators (ICD) are effective in 
treating malignant ventricular arrhythmias in 

HCM individuals [7, 8]. The limited availability 
of certain diagnostic tests and the diversity 
of HCM phenotypes can hinder accurate risk 
stratification for SCD and the appropriate se-
lection of therapeutic strategies. Identification 
of patients at the highest risk of arrhythmic 
events is, therefore, an important part of clin-
ical care. Secondary-prevention ICDs are indi-
cated for HCM patients who have experienced 
a prior malignant ventricular arrhythmia (re-
suscitated during hospital arrest or sustained 
ventricular tachycardia), but identifying who 
may benefit from a primary prevention device 
is more challenging. Our understanding of the 
risk factors for SCD has developed over time, 
leading to the development of risk prediction 
algorithms that provide an individualized 
estimate of SCD risk. They are recommended 
in the decision-making process regarding 
the implantation of primary-prevention ICDs 
[9, 10].
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MECHANISMS OF ARRHYTHMOGENESIS 
IN HCM

The etiology of cardiac arrhythmias in HCM is complex 
and multifactorial. Proposed pathophysiological mech-
anisms include conduction dispersion associated with 
myocyte hypertrophy and disorganization, abnormalities 
related to intracellular calcium flux, conduction slowing 
in and around areas of fibrosis, and abnormal activity of 
distal Purkinje fibers [7, 9]. Sudden cardiac death in HCM 
patients is most often caused by ventricular tachycardia 
(VT) and ventricular fibrillation (VF) [10]. However, due to 
limited ventricular filling, outflow obstruction, and reduced 
cardiac output, even slower ventricular tachyarrhythmias 
may be poorly tolerated by HCM patients, leading to 
syncope or SCD. Based on analysis of ICD electrograms 
from HCM patients, the most common type of ventricular 
tachyarrhythmia was VF (50% of all episodes), followed 
by monomorphic VT (38%) and ventricular flutter (12%) 
[13] (Figure 1). Episodes of VF/ventricular flutter can be 
associated with exercise, highlighting the potential role of 
ischemia and abnormal/triggered automaticity as factors 
contributing to arrhythmogenesis [14, 15].

RISK STRATIFICATION FOR PRIMARY 
PREVENTION OF SCD — THE EVOLUTION  

OF RISK PREDICTION APPROACHES
Methods for assessing the risk of SCD and the indication 
for ICD implantation as part of primary prevention have 
evolved over the last two decades. It is widely accepted 
that certain demographic, clinical, and imaging character-
istics are important indicators of the risk of SCD associated 
with HCM.

Historic observational population studies identified 
certain clinical risk factors associated with increased risk of 
sudden death, which included VF or spontaneous VT, unex-
plained syncope, family history of SCD, maximum left ven-
tricular wall thickness ≥30 mm, abnormal blood pressure 

response, non-sustained ventricular tachycardia (nsVT). In 
2003, these were incorporated in the first risk stratification 
guidelines for HCM in a joint consensus statement by the 
American College of Cardiology Foundation (ACC)/Ameri-
can Heart Association (AHA) and the European Society of 
Cardiology (ESC), which recommended considering an 
ICD in the presence of one or more clinical risk factors [11]. 
Although the assessment of these clinical risk factors con-
tinues to be important for the risk stratification of patients, 
this approach, which provides relative rather than absolute 
estimates of risk, has been shown to have limited power 
to distinguish high and low-risk patients. To address these 
concerns, in 2014, the first risk prediction algorithm (HCM 
Risk SCD) was developed using a large European cohort of 
adult (>16 years) HCM patients. This model uses 5 routinely 
available clinical risk factors (patient’s age, maximum LV 
wall thickness, left atrium size, LV outflow tract [LVOT] 
gradient, family history of SCD, presence of nsVT, and un-
explained syncope) to calculate an individualized estimate 
of 5-year SCD risk [16]. Some studies have raised concerns 
that this approach may have lower sensitivity to identify 
patients at risk of events [10], but multiple independent 
external validation studies have confirmed that this risk 
model provides accurate risk estimates that can be used 
as part of a shared decision-making process to guide ICD 
implantation [17]. 

Historically there has been a divergent approach to 
risk stratification in North America and Europe with risk 
calculators adopted by the ESC guidelines in 2014 and 
ESC/AHA guidelines continuing to recommend a single 
risk factor approach to risk stratification [18]. However, 
the most recent ESC and AHA/ACC guidelines published 
in 2023 [19, 20] and 2024 [19, 21], respectively, both now 
recommend using risk calculators as part of the risk strati-
fication process. Some differences remain concerning the 
treatment of additional risk factors and when risk calcula-
tors should be used (for all patients in the ESC guidelines 
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Figure 1. Arrhythmogenesis in hypertrophic cardiomyopathy (HCM) — mechanisms and types of ventricular arrhythmias

Abbreviations: ICD, implantable cardioverter-defibrillator
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and only when 1 or more risk factors are present in the 
AHA/ACC guidelines). Generally, the highest-risk patients 
are identified by both risk stratification approaches, but the 
single-risk-factor approach leads to more ICDs implanted in 
lower-risk patients who might be exposed to device-related 
complications, including inappropriate therapies [21–25]. 
This is why there is an agreement in both guidelines that 
individualized estimates of risk are a helpful tool for use as 
part of the shared decision-making process. 

Including some other potential risk factors, not cur-
rently used in SCD risk calculators,  may be helpful in 
decision-making, and that has been the subject of recent 
interest. Studies have described a higher risk of sudden 
death events in patients with LV systolic dysfunction 
(LV ejection fraction [LVEF] <50%). However, the added 
value of systolic dysfunction in addition to risk calculator 
estimates is unclear. Guidelines differ in the approach to 
patients with systolic dysfunction. In the AHA/ACC guide-
lines, systolic dysfunction is considered a major risk factor, 
meaning ICD implantation is reasonable [21], whereas the 
ESC recommends estimating SCD risk using risk calculators 
and then considering the presence of dysfunction in the 
shared decision-making process [20]. 

The presence of fibrosis as assessed using late gadolin-
ium enhancement (LGE) on cardiac magnetic resonance 
(CMR) is associated with SCD risk, and it has been suggested 
that adding this variable to the risk calculator may improve 
the stratification of low or intermediate-risk patients. There 
are still practical concerns about the methods used to 
quantify LGE, and some uncertainties exist about how best 
to incorporate LGE in risk stratification decisions, which is 
reflected in the guidelines. 

Finally, LV aneurysms have been included as a major 
independent SCD risk factor in the most recent AHA/ACC 
guidelines, meaning they are considered a reasonable 
single indication for ICD implantation [21]. In contrast, they 
are not considered risk factors in the current ESC guide-
lines [20]. The reason for this is that studies reporting the 
association have all been small retrospective studies, apical 
aneurysms are relatively common (up to 5% of individuals), 
most patients who developed ventricular arrhythmias also 
had other “conventional” risk factors, and most ventricular 
arrhythmias were monomorphic ventricular tachycardia 
rather than VF, which means the predictive value of apical 
aneurysms is difficult to assess [20–22]. 

Possible associations of other clinical risk factors with 
sudden death have also been described, including B-type 
natriuretic peptide levels, atrial fibrillation, and the New 
York Heart Association functional class. However, the evi-
dence supporting their use in the risk stratification process 
is limited (Table 1). 

A summary of the significance of risk factors in the 
current European and American guidelines is presented 
in Tables 1 and 2.

While discussing indications for ICD implantation for 
primary prevention of SCD, we should be aware of the 

differences in ethnicity-related risk factors, especially be-
tween European and American HCM populations. On the 
other hand, it is also important to recognize the impact 
of the differences in HCM care and healthcare systems on 
the decision-making making process in ICD implantation. 

SCD RISK STRATIFICATION IN SPECIAL CASES

SCD risk stratification and therapy 

Mavacamten
Notably, there is an increasing interest in the effect of myo-
sin inhibitors (e.g., mavacamten) on arrhythmic risk in HCM. 
Theoretically, it may reduce the potential for malignant 
ventricular arrhythmias by alleviating LVOT obstruction 
and lowering ventricular filling pressures. However, a small 
subset of patients receiving myosin inhibitors may develop 
transient LV systolic dysfunction, potentially increasing the 
risk of arrhythmia. Current data come from studies with 
relatively small patient groups and randomized trials that 
are insufficiently powered to provide reliable information 
on SCD or similar events [15, 19, 23–27].

Mavacamten has been studied for its potential to re-
duce the need for septal reduction therapy (SRT) in patients 
with obstructive HCM. In the EXPLORER-HCM trial, patients 
receiving mavacamten demonstrated significant improve-
ments in symptoms, functional status, and outflow tract 
gradients compared to those receiving placebo. The study 
showed that after 16 weeks of treatment, the proportion of 
patients meeting guideline criteria for SRT was significantly 
lower in the mavacamten group (17.9%) compared to the 
placebo group (76.8%) [26].

Currently, mavacampten is dedicated only to a well-char-
acterized group of symptomatic patients with obstructive 
HCM. Moreover, the therapy needs individualization [26]. 
Both genetic testing before drug implementation and 
regular LVEF and LVOT gradient assessment are required 
for careful dose titration to achieve the appropriate target 
LVOT gradient while maintaining LVEF ≥50% and avoiding 
heart failure symptoms. All these make the SCD risk assess-
ment in patients receiving mavacamten even more difficult.

From the practical point of view, LVOT gradient is 
a component of the SCD risk score; thus the use of the SCD 
risk calculator should be validated in this new population 
of HCM patients. 

The long-term outcomes of myosin inhibitor therapy, 
including potential arrhythmic risks, remain to be deter-
mined.

Septal reduction therapy
There is a lack of evidence about the best way to assess 
SCD risk in patients who have undergone SRT. Indeed, the 
Risk SCD calculator in HCM uses maximal LVOT gradient 
as a clinical predictor but is not validated in this patient 
group. Previous studies have suggested that the risk of 
arrhythmia is reduced after surgical myectomy [23–25]. 
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This may be due to improved hemodynamics, which re-
duces adverse conditions favoring arrhythmias, such as 
increased ventricular filling pressure or subendocardial 
ischemia. There are greater doubts about the beneficial 
antiarrhythmic effect in cases of alcohol ablation due to 
the smaller reduction in septal mass [15]. 

Data from the international SHaRe (Sarcomeric Human 
Cardiomyopathy Registry) show that event-free survival of 
HCM patients after SRT at 10 years was 83% and ventricular 
arrhythmias were rare. After 6.8 years from SRT, 4% experi-
enced HCM-related death (0.6% per year), 13% a composite 
HF outcome (1.9% per year), and 5% a composite ventricu-
lar arrhythmia outcome (0.7% per year). Among adults, 
older age at SRT was associated with a higher incidence 
of HCM death [28].

Both the AHA/ACC [21] and ESC guidelines [20] suggest 
caution in using standard methods for assessing SCD risk 
in patients after SRT [28]. 

Older patients with HCM
The age at which HCM is diagnosed is gradually increasing. 
According to the SHaRe registry, about a third of people 
diagnosed after 2010 were over 60 years old [15, 29]. Older 

patients usually have a milder form of HCM, with less LV 
ventricular hypertrophy and less phenotypic disease sever-
ity. This is associated with a less frequent occurrence of SCD 
risk factors. In a study conducted at two referral centers, 
patients diagnosed with HCM after the age of 60 had 
annual disease-specific mortality of 0.64% and an annual 
SCD risk of 0.20% [22, 30]. Similar results were observed in 
a multicenter European cohort, where the incidence of SCD 
or equivalent events decreased with age. It is also worth 
noting that although nsVT and LGE are quite common in 
older HCM patients, their prognostic value as risk markers 
decreases with age [31, 32]. The risk SCD calculator in 
HCM includes age in the risk estimates, but current risk 
stratification strategies may be more applicable in younger, 
middle-aged patients. 

Children with HCM
The natural history and outcomes of HCM in childhood are 
highly variable and depend at least partly on the etiology 
and the age of onset. Although etiology is recognized 
to be more heterogeneous than in adult populations, 
the majority of cases are caused by sarcomeric protein 
variants. Patients with syndromic diseases (inborn errors 

Table 1. Risk factors for SCD in HCM

Risk factor ACC/ESC 
2003 con-

sensus

ACCF/AHA 
guidelines 

2011

ESC 2014  
guidelines

AHA/ACC/HRS 
2017  

guidelines

AHA/ACC 
2019 enhan-
ced strategy

AHA/ACC 
2020  

guidelines

ESC 2023  
guidelines

AHA/ACC 2024  
guidelines

VF or spontaneous VT + – – – – – – –

Unexplained syncope + + + – + + + +

Unexplained syncope 
within 6 months

– – – + – – – –

Family history of SCD + + + + + + – +

Family history of SCD at 
a young age (<40 years)

– – – – – – + –

Max LVWT ≥30 mm + + + + + + + + 
(in some cases 

≥28 mm)

Abnormal blood pres-
sure response

+ + – + – – – –

nsVT + + + + + + + +

Prior history of VF or 
sustained VT

– + – – – – – –

Age – – + – – – + –

LV outflow tract gradient – – + – – – + –

LA diameter – – + – – – + –

Cardiac arrest (VT/VF) – – – + – – – –

Spontaneous sustained 
VT causing syncope or 
hemodynamic com-
promise

– – – + – – – –

LV systolic dysfunction 
(LVEF <50% in echo-
cardiography or CMR 
imaging)

– – – + + + + +

Apical aneurysm – – – + + + – +

The extent of LGE ≥15% 
of LV mass

– – – – + + + +

Genotype status – – – – – – – +

Abbreviations: ACC, American College of Cardiology; ACCF, American College of Cardiology Foundation; AHA, American Heart Association; ESC, European Society of Cardio-
logy; HCM, hypertrophic cardiomyopathy; HRS, Heart Rhythm Society; LA, left atrial; LGE, late gadolinium enhanced; LV, left ventricle; LVEF, left ventricular ejection fraction; 
max; LVWT, maximum left ventricular wall thickness; nsVT, non-sustained ventricular tachycardia; SCD, sudden cardiac death; VF, ventricular fibrillation; VT, ventricular 
tachycardia
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Table 2. Standard and novel risk factors for SCD in HCM — the role in the current ESC and ACC/AHA guidelines

Risk factor Description/Cut points/Role in current SCD risk assessment

Demographic and clinical characteristics

Age The risk of SCD is highest in patients under 30 years of age and decreases as the patient ages. In patients over 60 years of age, 
the risk of SCD is less than 1%. In children, the relationship between the risk and age is nonlinear (the highest SCD risk at the 
age of 9–15 years). In the young HCM population, the significance of other risk factors (nsVT, LV hypertrophy, unexplained 
syncope) is of higher value. ESC guidelines — factor included in SCD risk score

Family history of sudden 
cardiac death (SCD)

A family history of SCD, defined as one or more deaths in first-degree relatives before the age of 40 years or sudden cardiac de-
ath at any age in a first-degree relative diagnosed with hypertrophic cardiomyopathy, increases the risk of SCD in HCM patients 
by up to 20%. In the HCM pediatric population, the SCD family history is of no significance 
• ESC guidelines — factor included in SCD risk score
• ACC/AHA guidelines — class IIa recommendation for ICD

Female sex Women with hypertrophic cardiomyopathy (HCM) have higher all-cause mortality, probably due to heart failure, as there is no 
increased rate of arrhythmogenic deaths or ICD shocks

Genotype The rate of SCD is higher in all groups of patients with HCM and a confirmed genetic mutation compared to patients without 
such a mutation. A meta-analysis of 7675 patients with HCM showed that the risk of SCD was 17% for patients with mutations 
in the TNNT2 gene, 11% for mutations in MYH7, and 5% for mutations in MYBPC3. In HCM patients without a confirmed muta-
tion, the risk of SCD was 0.4%. However, decisions about ICD implantation should not be based solely on the patient’s genotype

Symptoms

Unexplained syncope Many studies have shown that unexplained syncope, defined as a single event of unknown cause in the last 6 months, is  
a marker of increased SCD risk. HCM patients with a recent, unexplained loss of consciousness (less than 6 months ago) had  
a fivefold increased risk of SCD compared with patients without loss of consciousness. Older patients, defined as people aged 
40 years and over, with recent episodes of loss of consciousness (more than 5 years before the first assessment) did not show  
an increased SCD risk 
• ESC guidelines — factor included in SCD Risk Score
• ACC/AHA guidelines — class IIa recommendation for ICD

Functional class accor-
ding to the New York 
Heart Association (NYHA)

HCM patients in NYHA class III/IV have a higher risk of SCD compared to patients in class I/II

Structural abnormalities 

Maximum left ventricular 
wall thickness

Maximum left ventricular end-diastolic wall thickness, measured anywhere in the left ventricle and of at least 30 mm, is associa-
ted with increased SCD risk in HCM patients 
• ESC guidelines — factor included in SCD Risk Score
• ACC/AHA guidelines — class IIa recommendation for ICD

Left atrial (LA) dimen-
sions

In clinical practice, it is assumed that the left atrial dimension assessed in M-mode or 2D echocardiography in the long-axis 
parasternal projection, exceeding 45 mm, may be considered a marker of increased SCD risk in HCM patients. 
• ESC guidelines — factor included in SCD risk score

Maximum gradient in the 
left ventricular outflow 
tract (LVOTO)

LVOTO is assessed at rest and during Valsalva maneuvers using continuous and pulsed Doppler in 3-, 4-, and 5-chamber projec-
tions. Most studies have shown a correlation between an LVOT gradient of ≥30 mm Hg and a worse prognosis in terms of SCD 
risk. 
• ESC guidelines — factor included in SCD Risk Score

Left ventricular (LV) 
systolic dysfunction

Left ventricular (LV) systolic dysfunction, defined as left ventricular ejection fraction (LVEF) less than 50%, occurs in approxima-
tely 5–10% of HCM patients and is associated with worse prognosis, including an increased SCD risk ESC guidelines — used as 
an additional clinical risk factor
• ACC/AHA guidelines — class IIa recommendation for ICD 

Left ventricular apical 
aneurysm (LVAA)

Left ventricular apical aneurysm (LVAA) is rare among HCM patients, occurring in fewer than 2% of patients, and is associated 
with a higher risk of arrhythmia and SCD
• ACC/AHA guidelines — class IIa recommendation for ICD 

Late gadolinium enhan-
cement (LGE) on cardiac 
magnetic resonance 
(CMR)

The presence of LGE on CMR occurs in approximately 60% of HCM patients and reflects the degree of myocardial fibrosis. 
Fibrosis is associated with increased risk of ventricular arrhythmias and SCD. Each 10% increase in LGE is associated with a 40% 
increase in the relative SCD risk. Extensive LGE is defined as ≥15% of LV mass
• ESC guidelines — extensive LGE used as an additional clinical risk factor
• ACC/AHA guidelines — extensive LGE — class IIb recommendation for ICD

History of arrhythmia – ECG, Holter monitoring

Non-sustained ventricu-
lar tachycardia

Non-sustained ventricular tachycardia, defined as at least 3 ventricular beats with a rate of at least 120/min lasting less than 30 
seconds, occurs in approximately 20%–30% of patients with HCM over 40 years of age. One study suggested that the predictive 
value of nsVT was significant in HCM only in patients under 30 years of age, and the frequency, duration, and rate of nsVT were 
not significant. Another study showed that nsVT is associated with higher SCD risk in HCM only when it occurs repeatedly or is 
symptomatic. In conclusion, however, the predictive value of nsVT for SCD is not high, so nsVT alone is not sufficient to justify 
ICD implantation
• ESC guidelines — factor included in SCD Risk Score 
• ACC/AHA guidelines — class IIa (children)/IIb (adults) recommendation for ICD 

Atrial fibrillation Atrial fibrillation occurs in approximately 20% of HCM patients and is associated with increased risk of SCD and heart failure

Response to exercise

Abnormal blood pressure 
response to exercise

An abnormal blood pressure in response to exercise, defined as no increase in systolic blood pressure (SBP) of more than 20 
mm Hg or a decrease in SBP of 10 mm Hg during exercise, occurs in more than one-third of HCM patients and is an indepen-
dent SCD risk factor. Moreover, it is more visible in younger patients

ECG stress test The occurrence of ventricular arrhythmias (VT/VF) during exercise is considered an important SCD risk factor in HCM. Therefore, 
periodic exercise testing plays a key role in risk assessment and monitoring of HCM patients 

Additional risk factors

B-type natriuretic  
peptide level

Although BNP is not included in the guidelines as indication for ICD implantation, as a cardiac biomarker it reflects the degree 
of heart failure. This may be important in assessing SCD risk in HCM patients 

Abbreviations: see Table 1
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of metabolism or RASopathy syndromes) or with early 
onset (in the first year of life) have worse prognosis [33, 
34]. Syndromic causes of HCM include conditions such 
as Pompe disease, Fabry disease, and Noonan syndrome, 
which present with distinct pathophysiological features 
and prognostic implications [33–44]. Pompe disease and 
Fabry disease represent inborn errors of metabolism, while 
Noonan syndrome belongs to the group of RASopathies, 
which are disorders caused by mutations in genes of the 
RAS/MAPK pathway. These syndromes often manifest with 
multisystem involvement, compounding the complexity 
of HCM management [33–44]. Studies in small, selected 
groups of patients from tertiary centers reported a high 
incidence of SCD in childhood, up to 7% per year [35]. How-
ever, more contemporary data from larger, representative 
population-based studies have described a lower true rate 
of SCD estimated at 0.8% to 2% per year [8, 36]. Post infancy, 
SCD is the most common cause of death in pediatric HCM 
patients, and recent population-based studies indicate that 
arrhythmic events account for over 50% of adverse events 
within 10 years of diagnosis, with a cumulative incidence of 
8.8%. Recent studies indicate that children with HCM are at 
greater risk of arrhythmic events than adults, as highlighted 
by the SHaRE database, where patients with pediatric-onset 
HCM were 36% more likely to experience an arrhythmic 
event than those diagnosed in adulthood [36].

For a long time, understanding of risk factors for SCD 
in childhood was limited and extrapolated from adult 
studies. However, there is now a good evidence base to 
support SCD risk stratification in childhood. Many of the 
risk factors in childhood are the same as in adult practice 
(e.g. LV hypertrophy, left atrial diameter, nsVT, unexplained 
syncope, previous malignant arrhythmia), but there are 
important differences as well. Family history of sudden 
death has been shown in multiple studies not to be strongly 
associated with risk [37]. The previously discussed SCD risk 
model in HCM is not validated for use in children, but in 
2019 the first childhood risk prediction model (HCM Risk-
Kids) was developed in a cohort of over 1000 children with 
non-syndromic disease, meaning individualized estimates 
of risk could be calculated for the first time in pediatric pa-
tients [36]. A second model, PRIMaCY, was later published, 
which appears to have a similar ability to identify high-risk 
patients but may overestimate risk in some patient groups, 
leading to higher ICD implantation rates [38-40]. Both the 
ESC and AHA/ACC guidelines recommend using pediat-
ric-specific risk tools in the ICD implantation decision-mak-
ing process in line with adult practice. There are limited 
data to support the use of additional risk factors (e.g. LV 
aneurysm, LV systolic dysfunction) in pediatric practice. 
LGE is less frequently seen in childhood patients but has 
been described to be associated with other risk factors 
for sudden death and the degree of hypertrophy [41, 42]. 
In agreement with adult practice, a recent study showed 
an independent association of LGE with SCD events and 
suggested that the discriminatory ability of the pediatric 

risk models is improved by adding it to the calculated risk 
estimates. It remains unclear how to incorporate this in 
individual patients’ ICD risk assessments [43, 44].

SCD risk assessment in HCM phenocopies — 
unresolved problem

Whilst HCM phenocopies are relatively rare, it is crucial 
to distinguish these conditions as their management and 
prognosis vary significantly from that of HCM with sarco-
mere mutations. The debate on SCD risk assessment and 
ICD implantation in patients with HCM phenocopies, i.e. 
cardiac amyloidosis (CA) or Anderson–Fabry disease (AFD) 
is still ongoing. 

Retrospective analyses of the results of ICD implanta-
tion in CA patients are few and often contradictory [45]. 
A review of data on 720 patients who had an ICD implanted 
found that although a quarter of them received appropriate 
ICD therapy, only 22% of these patients survived long-term 
follow-up. In approximately 68% of patients, the ICD prob-
ably did not affect survival [45]. The results of these studies 
vary, which may be due to differences in patient numbers, 
methodology, and the diversity of CA etiologies. One of the 
main problems is the retrospective nature of most studies 
and the fact that they included patients with different 
types of amyloidosis, making it difficult to draw valid 
conclusions. AL amyloidosis, associated with higher risk of  
mortality, was suggested as an independent predictor  
of poor prognosis. Unexplained syncope, which is a com-
mon symptom in CA patients, may result from many dif-
ferent causes, which further complicates the qualification 
process for ICD implantation. Additionally, a decline in LV 
systolic function is a late symptom of CA, suggesting the 
need to use more advanced echocardiographic parameters 
to assess cardiac function [45].

The ESC, in its 2015 consensus statement, does not 
recommend prophylactic ICD implantation in CA patients 
[18], and the 2019 Heart Rhythm Society guidelines only 
consider this option in patients with nsVT and expected 
survival of more than one year. However, this is a class IIb 
recommendation, indicating limited certainty about the 
benefits [41].

Implantation of ICD in AFD is currently recommended 
mainly for patients who have suffered cardiac arrest with 
VF or VT, and for those who experience spontaneous, 
sustained VT leading to syncope or hemodynamic dis-
turbances [46, 47]. This means that ICDs are mainly used 
as secondary prevention after symptomatic arrhythmia 
episodes. However, there is still controversy regarding the 
qualification criteria for ICD implantation as part of primary 
prevention. 

A retrospective study from the United Kingdom found 
that 44% of patients with ICDs received the device for 
primary prevention, based only on the presumed risk of 
malignant arrhythmias and sudden cardiac death. These 
criteria included, among others: severe LV hypertrophy, 
extensive cardiac fibrosis, electrocardiography (ECG) ab-
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normalities, previous episodes of nsVT, and a family history 
of SCD [48]. Especially LGE on CMR, which is a marker of 
fibrosis, correlates with the occurrence of malignant ven-
tricular arrhythmias and SCD risk. 

Men with AFD have a shorter life expectancy than wom-
en, and the risk of SCD is greater in older male patients [46].

In conclusion, ICD implantation in AFD is mainly recom-
mended as secondary prevention, while ICD use in primary 
prevention requires further research and assessment of 
individual risk factors [46].

SCD RISK STRATIFICATION  
— FUTURE PERSPECTIVES

Genetics and risk stratification  
associated with HCM
Genotype-positive HCM has been described as having 
worse prognosis with higher rates of disease-related 
complications [29, 47]. However, the role of genetics in risk 
stratification remains uncertain. Early studies suggested 
that particular genes were associated with increased risk 
of sudden death, but subsequent studies have reported 
conflicting findings [41]. Recent research has identified 
specific high-risk mutations that may influence SCD risk. 
Variants such as MYBPC3 p.Val158Met, TNNT2 p.Lys263Arg, 
and MYH7 p.Val320Met have been associated with a more 
malignant phenotype and an elevated risk of sudden 
cardiac death [49]. Despite these findings, the use of ge-
netic testing in routine risk stratification decision-making 
remains limited. At present, genetic results are primarily 
utilized to guide family screening and identify carriers of 
pathogenic mutations [20, 21], while their role in direct 
clinical risk stratification for SCD requires further validation. 
We suspect that our “genetic fingerprint” may be a com-
ponent of multiparameter individual risk analysis in the 
near future [49].

Modern imaging in the evaluation  
of “arrhythmogenic” burden
Novel CMR techniques — CMR native T1 mapping and 
extracellular volume fraction imaging used for quantitative 
myocardial tissue characteristics can predict SCD in HCM 
patients [50]; global native T1 mapping may improve risk 
stratification in HCM patients defined as a low SCD risk 
[51]. Global extracellular volume fraction was reported 
as superior to LGE in risk prediction (area under the curve 
0.83 vs. 0.8) [52]. T2 mapping can also be an added value 
because it improves stratification in HCM subjects with 
LGE presence [52].

A detailed analysis of LV mechanics on echocardiogra-
phy or CMR can be recognized as a consequence of local LV  
remodeling and creates additional novel markers. Both  
LV strain reflecting myocardial inhomogeneity and LV apical 
fractal dimension corresponding to trabecular complexity 
have been proposed as predictors of SCD in HCM patients 
[45–56].

Modern arrhythmia monitoring/induction
Long-term ambulatory rhythm monitoring with implant-
able loop recorders may allow the timely detection of 
actionable high-risk arrhythmias that are often precursors 
of more malignant arrhythmias and SCD [57]. However, the 
cost-effectiveness and significance of short nsVT remain 
to be resolved.

Programmed electrical stimulation (PES) to stratify 
arrhythmic risk in HCM patients is still controversial due to 
its invasiveness and the fact that ventricular arrhythmias 
induced by PES are considered non-specific. PES is not 
considered in the current guidelines [18].

However, according to the recently published data 
by Gatzoulis et al. [58], inducibility at PES predicts SCD or 
indicates an appropriate device therapy in HCM, and non- 
-inducibility is associated with prolonged event-free surviv-
al [58]. An analogous hypothesis was formulated recently 
by Saumarez et al. [59]. Given an improved understanding 
of complex arrhythmogenesis, the authors suggested that 
arrhythmic SCD can be more accurately predicted using 
electrophysiological approaches, and we should research 
further development of these methods [59].

Artificial intelligence
Shortly, artificial intelligence (AI) may play a key role in 
assessing SCD risk in HCM patients. In current methods, 
based on clinical risk factors such as a history of syncope 
and myocardial thickness, subtle differences between 
patients are often not taken into account. AI, especially 
machine learning algorithms, can revolutionize this assess-
ment, enabling a more precise and personalized diagnosis.

In the coming years, AI may become an invaluable tool 
for analyzing both ECG and heart images such as CMR and 
echocardiography. Thanks to advanced algorithms, AI will 
be able to identify even more accurately structural changes, 
such as fibrosis, which are strongly associated with SCD risk. 
Automatic segmentation using LGE images allows us to 
quantify automatically LV mass and fibrosis [60]. Recently 
it was documented that LV radionic features obtained from 
LGE images are an independent SCD risk factor in HCM 
(hazard ratio, 1.208–1.211) [61]. Radiomic analysis, a process 
of extracting a vast array of quantitative features from med-
ical imaging, provides insight into the microstructural and 
functional heterogeneity of the myocardium that might not 
be visible to the human eye. By leveraging such data, AI can 
highlight patterns that correlate with adverse outcomes, 
such as arrhythmias or SCD. This opens up new avenues 
for stratifying patients based on imaging biomarkers and 
tailoring interventions accordingly, making AI-driven risk 
models increasingly reliable. Hopefully, integrating these 
data with genetic information will allow an assessment of 
how specific mutations affect a patient’s risk.

The future will also bring new opportunities in heart 
rhythm monitoring and ECG analysis. AI algorithms will be 
able to detect subtle anomalies, i.e. induced by sympathetic 
dysregulation [62], that may signal the risk of ventricular 
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arrhythmias and monitor patients in real-time. Correlations 
with seasonal, and activity-related arrhythmia patterns may 
be of additional prognostic value. As a result, AI can provide 
automatic warnings of impending threats, enabling quick 
intervention and potentially saving lives.

However, despite its great potential, the future of AI 
implementation in SCD risk assessment requires further 
research and validation. It will also be crucial to maintain 
the role of doctors as decision-makers, who will use AI as 
a support and not as a replacement for their knowledge 
and experience. In the coming years, we can expect AI to 
become an integral part of cardiology, leading to more 
precise and personalized care for patients with HCM and 
other heart conditions.

CONCLUSION
To conclude, the field of SCD risk stratification in HCM has 
advanced significantly over the past decade. Even though 
the standard, well-recognized risk factors have remained 
the same, the SCD risk models should be used as part of the 
shared-decision making process. Additional risk factors (e.g. 
impaired LV systolic function, LGE on CMR) may provide 
further valuable information for intermediate-risk patients 
that allows for individualization and tailored treatment. 
Children with HCM are at higher risk of SCD, but the risk 
can be accurately assessed using pediatric risk tools. On-
going real-world validation of the current risk stratification 
is still required. Risk stratification remains challenging in 
some groups of patients — after septal reduction therapy, 
during mavacamten administration, in patients with HCM 

phenocopies. On the other hand, a novel approach based 
on multifactorial assessment supported by AI models will 
allow for introducing individual risk scores, hopefully in the 
near future (Figure 2) [54, 55].
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