Online first
Short communication
Published online: 2024-11-12
Elite HRV smartphone application using Polar H10 is valid for short-term heart rate variability analysis in pediatric cardiac patients
Pubmed: 39535942
Abstract
Not available
References
- Aletti F, Ferrario M, de Jesus TB, et al. Heart rate variability in children with cyanotic and acyanotic congenital heart disease: analysis by spectral and non linear indices. Annu Int Conf IEEE Eng Med Biol Soc. 2012; 2012: 4189–4192.
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996; 93(5): 1043–1065.
- Boris JR. Heart rate variability in congenital heart disease: looking and learning. Eur J Cardiothorac Surg. 2021; 61(1): 90–91.
- Barbosa MP, da Silva NT, de Azevedo FM, et al. Comparison of Polar® RS800G3™ heart rate monitor with Polar® S810i™ and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin Physiol Funct Imaging. 2016; 36(2): 112–117.
- Weippert M, Kumar M, Kreuzfeld S, et al. Comparison of three mobile devices for measuring R-R intervals and heart rate variability: Polar S810i, Suunto t6 and an ambulatory ECG system. Eur J Appl Physiol. 2010; 109(4): 779–786.
- Speer KE, Semple S, Naumovski N, et al. Measuring heart rate variability using commercially available devices in healthy children: a validity and reliability study. Eur J Investig Health Psychol Educ. 2020; 10(1): 390–404.
- Gamelin FX, Baquet G, Berthoin S, et al. Validity of the polar S810 to measure R-R intervals in children. Int J Sports Med. 2008; 29(2): 134–138.
- Vasconcellos FVA, Seabra A, Cunha FA, et al. Heart rate variability assessment with fingertip photoplethysmography and polar RS800cx as compared with electrocardiography in obese adolescents. Blood Press Monit. 2015; 20(6): 351–360.
- Plaza-Florido A, Sacha J, Alcantara J. Short-term heart rate variability in resting conditions: methodological considerations. Kardiol Pol. 2021; 79(7-8): 745–755.
- Lee J, Koh D, Ong CN. Statistical evaluation of agreement between two methods for measuring a quantitative variable. Comput Biol Med. 1989; 19(1): 61–70.
- Gilboa SM, Devine OJ, Kucik JE, et al. Congenital heart defects in the united states: estimating the magnitude of the affected population in 2010. Circulation. 2016; 134(2): 101–109.
- Rydberg A, Karlsson M, Hörnsten R, et al. Can analysis of heart rate variability predict arrhythmia in children with Fontan circulation? Pediatr Cardiol. 2008; 29(1): 50–55.
- Knijnik L, Lloyd MS. Treatment of arrhythmia disorders in the adult with congenital heart disease: A lesion-specific review. Kardiol Pol. 2022; 80(11): 1072–1083.
- Gąsior JS, Sacha J, Jeleń PJ, et al. Heart rate and respiratory rate influence on heart rate variability repeatability: effects of the correction for the prevailing heart rate. Front Physiol. 2016; 7: 356.
- Gąsior JS, Młyńczak M, Rosoł M, et al. Validity of the Pneumonitor for RR intervals acquisition for short-term heart rate variability analysis extended with respiratory data in pediatric cardiac patients. Kardiol Pol. 2023; 81(5): 491–500.