Vol 13, No 2 (2019)
Review paper
Published online: 2019-06-05

open access

Page views 935
Article views/downloads 745
Get Citation

Connect on Social Media

Connect on Social Media

Immunology for palliative medicine specialists. The role of Toll-like receptors in inducing disease symptoms

Zbigniew Żylicz12
Palliat Med Pract 2019;13(2):57-64.

Abstract

Organizm ludzki ochraniany jest przed czynnikami szkodliwymi pochodzącymi ze świata zewnętrznego i wewnętrznego poprzez system odporności wrodzonej i nabytej, które współpracują ze sobą zarówno u osób zdrowych, jak i u chorych. Receptory Toll-like zlokalizowane są na powierzchni komórek mikrogleju i biorą udział w rozwoju zapalenia neurogennego, które z kolei prowadzi do wystąpienia wielu chorób i objawów, takich jak: depresja, zmęczenie, ból przewlekły i neuropatyczny, kaszel, zaparcie stolca i świąd. Aktywację receptorów Toll-like hamują między innymi leki przeciwdepresyjne. Prawdopodobnie w niedalekiej przyszłości poznane zostaną nowsze leki, skuteczniej hamujące rozwój zapalenia neurogennego, co pozwoli skuteczniej leczyć objawy oporne na standardową farmakoterapię.

Article available in PDF format

View PDF Download PDF file

References

  1. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006; 312(5778): 1355–1359.
  2. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012; 13(4): 260–270.
  3. de Weerth C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev. 2017; 83: 458–471.
  4. Newburg DS. Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. J Anim Sci. 2009; 87(13 Suppl): 26–34.
  5. O'Mahony SM, Clarke G, Borre YE, et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015; 277: 32–48.
  6. Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013; 36(5): 305–312.
  7. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015; 17(5): 565–576.
  8. Perry S, de Jong BC, Solnick JV, et al. Infection with Helicobacter pylori is associated with protection against tuberculosis. PLoS One. 2010; 5(1): e8804.
  9. Higgins PDR, Johnson LA, Luther J, et al. Prior Helicobacter pylori infection ameliorates Salmonella typhimurium-induced colitis: mucosal crosstalk between stomach and distal intestine. Inflamm Bowel Dis. 2011; 17(6): 1398–1408.
  10. Pedrini MJ, Seewann A, Bennett KA, et al. Helicobacter pylori infection as a protective factor against multiple sclerosis risk in females. J Neurol Neurosurg Psychiatry. 2015; 86(6): 603–607.
  11. Atherton JC, Blaser MJ. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest. 2009; 119(9): 2475–2487.
  12. Jakobsson HE, Jernberg C, Andersson AF, et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One. 2010; 5(3): e9836.
  13. Wang F, Meng J, Zhang Li, et al. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci Rep. 2018; 8(1): 3596.
  14. Cook MD, Allen JM, Pence BD, et al. Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunol Cell Biol. 2016; 94(2): 158–163.
  15. Seidel J, Valenzano DR. The role of the gut microbiome during host ageing. F1000Res. 2018; 7.
  16. Moresco EM, LaVine D, Beutler B. Toll-like receptors. Curr Biol. 2011; 21(13): R488–R493.
  17. Harrison NA, Brydon L, Walker C, et al. Neural origins of human sickness in interoceptive responses to inflammation. Biol Psychiatry. 2009; 66(5): 415–422.
  18. Higgins SC, Lavelle EdC, McCann C, et al. Toll-like receptor 4-mediated innate IL-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. J Immunol. 2003; 171(6): 3119–3127.
  19. Wachholz S, Eßlinger M, Plümper J, et al. Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav Immun. 2016; 55: 105–113.
  20. Pandey GN, Rizavi HS, Bhaumik R, et al. Toll-like receptors in the depressed and suicide brain. J Psychiatr Res. 2014; 53: 62–68.
  21. Sanchez-Guajardo V, Tentillier N, Romero-Ramos M. The relation between α-synuclein and microglia in Parkinson's disease: Recent developments. Neuroscience. 2015; 302: 47–58.
  22. Fuxe KG, Tarakanov AO, Goncharova LB, et al. A new road to neuroinflammation in Parkinson's disease? Brain Res Rev. 2008; 58(2): 453–458.
  23. Doorn KJ, Moors T, Drukarch B, et al. Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson's disease patients. Acta Neuropathol Commun. 2014; 2: 90.
  24. Nyati KK, Prasad KN. Role of cytokines and Toll-like receptors in the immunopathogenesis of Guillain-Barré syndrome. Mediators Inflamm. 2014; 2014: 758639.
  25. Gooshe M, Abdolghaffari AH, Gambuzza ME, et al. The role of Toll-like receptors in multiple sclerosis and possible targeting for therapeutic purposes. Rev Neurosci. 2014; 25(5): 713–739.
  26. Husseinzadeh N, Davenport SM. Role of toll-like receptors in cervical, endometrial and ovarian cancers: a review. Gynecol Oncol. 2014; 135(2): 359–363.
  27. Moossavi S, Rezaei N. Toll-like receptor signalling and their therapeutic targeting in colorectal cancer. Int Immunopharmacol. 2013; 16(2): 199–209.
  28. Xu Y, Liu H, Liu S, et al. Genetic variant of IRAK2 in the toll-like receptor signaling pathway and survival of non-small cell lung cancer. Int J Cancer. 2018; 143(10): 2400–2408.
  29. Song IJ, Yang YM, Inokuchi-Shimizu S, et al. The contribution of toll-like receptor signaling to the development of liver fibrosis and cancer in hepatocyte-specific TAK1-deleted mice. Int J Cancer. 2018; 142(1): 81–91.
  30. Young JJ, Bruno D, Pomara N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J Affect Disord. 2014; 169: 15–20.
  31. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006; 27(1): 24–31.
  32. Alesci S, Martinez PE, Kelkar S, et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab. 2005; 90(5): 2522–2530.
  33. Miller GE, Stetler CA, Carney RM, et al. Clinical depression and inflammatory risk markers for coronary heart disease. Am J Cardiol. 2002; 90(12): 1279–1283.
  34. Thomas AJ, Davis S, Morris C, et al. Increase in interleukin-1beta in late-life depression. Am J Psychiatry. 2005; 162(1): 175–177.
  35. Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry. 2004; 56(11): 819–824.
  36. Musselman DL, Lawson DH, Gumnick JF, et al. Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med. 2001; 344(13): 961–966.
  37. Capuron L, Ravaud A, Neveu PJ, et al. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry. 2002; 7(5): 468–473.
  38. Dahl J, Ormstad H, Aass HC, et al. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology. 2014; 45: 77–86.
  39. Chen CY, Yeh YW, Kuo SC, et al. Differences in immunomodulatory properties between venlafaxine and paroxetine in patients with major depressive disorder. Psychoneuroendocrinology. 2018; 87: 108–118.
  40. Halaris A, Myint AM, Savant V, et al. Does escitalopram reduce neurotoxicity in major depression? J Psychiatr Res. 2015; 66-67: 118–126.
  41. Durairaj H, Steury MD, Parameswaran N. Paroxetine differentially modulates LPS-induced TNFα and IL-6 production in mouse macrophages. Int Immunopharmacol. 2015; 25(2): 485–492.
  42. Grace PM, Rolan PE, Hutchinson MR. Peripheral immune contributions to the maintenance of central glial activation underlying neuropathic pain. Brain Behav Immun. 2011; 25(7): 1322–1332.
  43. Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009; 10(1): 23–36.
  44. Hutchinson MR, Shavit Y, Grace PM, et al. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev. 2011; 63(3): 772–810.
  45. Hutchinson MR, Zhang Y, Shridhar M, et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun. 2010; 24(1): 83–95.
  46. Eidson LN, Murphy AZ. Blockade of Toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine. J Neurosci. 2013; 33(40): 15952–15963.
  47. Hutchinson MR, Loram LC, Zhang Y, et al. Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience. 2010; 168(2): 551–563.
  48. Raynor K, Kong H, Chen Y, et al. Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol Pharmacol. 1994; 45(2): 330–334.
  49. Wang X, Zhang Y, Peng Y, et al. Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. Br J Pharmacol. 2016; 173(5): 856–869.
  50. Cheng W, Li Y, Hou X, et al. HSP60 is involved in the neuroprotective effects of naloxone. Mol Med Rep. 2014; 10(4): 2172–2176.
  51. Hutchinson MR, Northcutt AL, Hiranita T, et al. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci. 2012; 32(33): 11187–11200.
  52. Lewis SS, Loram LC, Hutchinson MR, et al. (+)-naloxone, an opioid-inactive toll-like receptor 4 signaling inhibitor, reverses multiple models of chronic neuropathic pain in rats. J Pain. 2012; 13(5): 498–506.
  53. Mika J. Modulation of microglia can attenuate neuropathic pain symptoms and enhance morphine effectiveness. Pharmacol Rep. 2008; 60(3): 297–307.
  54. Jurga AM, Rojewska E, Piotrowska A, et al. Blockade of Toll-Like Receptors (TLR2, TLR4) Attenuates Pain and Potentiates Buprenorphine Analgesia in a Rat Neuropathic Pain Model. Neural Plast. 2016; 2016: 5238730.
  55. Yu HR, Huang HC, Kuo HC, et al. IFN-α production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell Mol Immunol. 2011; 8(2): 181–188.
  56. Liu T, Gao YJ, Ji RR. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci Bull. 2012; 28(2): 131–144.
  57. Due MR, Piekarz AD, Wilson N, et al. Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling. J Neuroinflammation. 2012; 9: 200.
  58. Lewis SS, Hutchinson MR, Rezvani N, et al. Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience. 2010; 165(2): 569–583.
  59. Lewis SS, Hutchinson MR, Rezvani N, et al. Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience. 2010; 165(2): 569–583.
  60. Lewis SS, Hutchinson MR, Frick MM, et al. Select steroid hormone glucuronide metabolites can cause toll-like receptor 4 activation and enhanced pain. Brain Behav Immun. 2015; 44: 128–136.
  61. Jin XH, Wang LN, Zuo JL, et al. P2X4 receptor in the dorsal horn partially contributes to brain-derived neurotrophic factor oversecretion and toll-like receptor-4 receptor activation associated with bone cancer pain. J Neurosci Res. 2014; 92(12): 1690–1702.
  62. Nagata K, Imai T, Yamashita T, et al. Antidepressants inhibit P2X4 receptor function: a possible involvement in neuropathic pain relief. Mol Pain. 2009; 5: 20.
  63. Sobczak M, Sałaga M, Storr MA, et al. Physiology, signaling, and pharmacology of opioid receptors and their ligands in the gastrointestinal tract: current concepts and future perspectives. J Gastroenterol. 2014; 49(1): 24–45.
  64. Lay J, Carbone SE, DiCello JJ, et al. Distribution and trafficking of the μ-opioid receptor in enteric neurons of the guinea pig. Am J Physiol Gastrointest Liver Physiol. 2016; 311(2): G252–G266.
  65. Farzi A, Halicka J, Mayerhofer R, et al. Toll-like receptor 4 contributes to the inhibitory effect of morphine on colonic motility in vitro and in vivo. Sci Rep. 2015; 5: 9499.
  66. Ishihara S, Tada Y, Fukuba N, et al. Pathogenesis of irritable bowel syndrome--review regarding associated infection and immune activation. Digestion. 2013; 87(3): 204–211.
  67. Meissner W, Schmidt U, Hartmann M, et al. Oral naloxone reverses opioid-associated constipation. Pain. 2000; 84(1): 105–109.
  68. Meissner W, Leyendecker P, Mueller-Lissner S, et al. A randomised controlled trial with prolonged-release oral oxycodone and naloxone to prevent and reverse opioid-induced constipation. Eur J Pain. 2009; 13(1): 56–64.
  69. Ur E, White PD, Grossman A. Hypothesis: cytokines may be activated to cause depressive illness and chronic fatigue syndrome. Eur Arch Psychiatry Clin Neurosci. 1992; 241(5): 317–322.
  70. Lucas K, Morris G, Anderson G, et al. The Toll-Like Receptor Radical Cycle Pathway: A New Drug Target in Immune-Related Chronic Fatigue. CNS Neurol Disord Drug Targets. 2015; 14(7): 838–854.
  71. Twycross R, Greaves MW, Handwerker H, et al. Itch: scratching more than the surface. QJM. 2003; 96(1): 7–26.
  72. Ji RR. Neuroimmune interactions in itch: Do chronic itch, chronic pain, and chronic cough share similar mechanisms? Pulm Pharmacol Ther. 2015; 35: 81–86.
  73. Taves S, Ji RR. Itch control by Toll-like receptors. Handb Exp Pharmacol. 2015; 226: 135–150.
  74. Liu T, Xu ZZ, Park CK, et al. Toll-like receptor 7 mediates pruritus. Nat Neurosci. 2010; 13(12): 1460–1462.
  75. Belghiti M, Estévez-Herrera J, Giménez-Garzó C, et al. Potentiation of the transient receptor potential vanilloid 1 channel contributes to pruritogenesis in a rat model of liver disease. J Biol Chem. 2013; 288(14): 9675–9685.
  76. Nattkemper LA, Martinez-Escala ME, Gelman AB, et al. Cutaneous T-cell Lymphoma and Pruritus: The Expression of IL-31 and its Receptors in the Skin. Acta Derm Venereol. 2016; 96(7): 894–898.
  77. Takamori A, Nambu A, Sato K, et al. IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Sci Rep. 2018; 8(1): 6639.
  78. Tsuda M, Masuda T, Tozaki-Saitoh H, et al. P2X4 receptors and neuropathic pain. Front Cell Neurosci. 2013; 7: 191.
  79. Trang T, Salter MW. P2X4 purinoceptor signaling in chronic pain. Purinergic Signal. 2012; 8(3): 621–628.
  80. Zylicz Z, Krajnik M, Sorge AA, et al. Paroxetine in the treatment of severe non-dermatological pruritus: a randomized, controlled trial. J Pain Symptom Manage. 2003; 26(6): 1105–1112.
  81. Mayo MJ, Handem I, Saldana S, et al. Sertraline as a first-line treatment for cholestatic pruritus. Hepatology. 2007; 45(3): 666–674.
  82. Ständer S, Böckenholt B, Schürmeyer-Horst F, et al. Treatment of chronic pruritus with the selective serotonin re-uptake inhibitors paroxetine and fluvoxamine: results of an open-labelled, two-arm proof-of-concept study. Acta Derm Venereol. 2009; 89(1): 45–51.
  83. Tynan RJ, Weidenhofer J, Hinwood M, et al. A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun. 2012; 26(3): 469–479.
  84. Chung KF, McGarvey L, Mazzone SB. Chronic cough as a neuropathic disorder. Lancet Respir Med. 2013; 1(5): 414–422.
  85. Haran JP, Buglione-Corbett R, Lu S. Cytokine markers as predictors of type of respiratory infection in patients during the influenza season. Am J Emerg Med. 2013; 31(5): 816–821.
  86. Nemes E, Rozot V, Geldenhuys H, et al. C-040-404 Study Team and the Adolescent Cohort Study Team. Optimization and Interpretation of Serial QuantiFERON Testing to Measure Acquisition of Mycobacterium tuberculosis Infection. Am J Respir Crit Care Med. 2017; 196(5): 638–648.
  87. Tsuda M, Masuda T, Kitano J, et al. IFN-gamma receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci U S A. 2009; 106(19): 8032–8037.
  88. Blaszczyk F. Oronska, A., Krajnik, M., Zylicz, Z. Fluvoxamine efficacy in severe dry cough in neoplasmatic disease. Polska Medycyna Paliatywna. 2005; 4: 17–20.
  89. Zylicz Z, Krajnik M. What has dry cough in common with pruritus? Treatment of dry cough with paroxetine. J Pain Symptom Manage. 2004; 27(2): 180–184.
  90. Amini S, Peiman S, Khatuni M, et al. The Effect of Dextromethorphan Premedication on Cough and Patient Tolerance During Flexible Bronchoscopy: A Randomized, Double-blind, Placebo-controlled Trial. J Bronchology Interv Pulmonol. 2017; 24(4): 263–267.
  91. Haase J, Brown E. Integrating the monoamine, neurotrophin and cytokine hypotheses of depression--a central role for the serotonin transporter? Pharmacol Ther. 2015; 147: 1–11.
  92. Lee YC, Chen PP. A review of SSRIs and SNRIs in neuropathic pain. Expert Opin Pharmacother. 2010; 11(17): 2813–2825.
  93. Hegade VS, Bolier R, Oude Elferink RPj, et al. Advances in pathogenesis and treatment of pruritus. Clin Liver Dis. 2013; 17(2): 319–329.
  94. Kaul I, Amin A, Rosenberg M, et al. Use of gabapentin and pregabalin for pruritus and neuropathic pain associated with major burn injury: A retrospective chart review. Burns. 2018; 44(2): 414–422.
  95. Zylicz Z. Krajnik, M., . The effect of gabapentin and pregabalin on symptoms other than pain and seizures. A review of the evidence. Adv Pall Med. 2008; 4: 179–84.
  96. Coplan PM, Sessler NE, Harikrishnan V, et al. Comparison of abuse, suspected suicidal intent, and fatalities related to the 7-day buprenorphine transdermal patch versus other opioid analgesics in the National Poison Data System. Postgrad Med. 2017; 129(1): 55–61.
  97. Leon AC, Marzuk PM, Tardiff K, et al. Paroxetine, other antidepressants, and youth suicide in New York City: 1993 through 1998. J Clin Psychiatry. 2004; 65(7): 915–918.