Vol 9 (2024): Continuous Publishing
Review paper
Published online: 2024-08-22

open access

Page views 96
Article views/downloads 62
Get Citation

Connect on Social Media

Connect on Social Media

expresRetinitis pigmentosa caused by mutations in the RPGR gene — review of the literature

Katarzyna Baltaziak1, Katarzyna Nowomiejska1, Robert Rejdak1
Ophthalmol J 2024;9:114-120.

Abstract

Retinitis pigmentosa (RP) is a varied collection of inherited disorders marked by numerous genes, mutations, and clinical manifestations. Progress in the treatment hinges on identifying causative genes and mutations, involving gene discovery and mutation screening for potential gene therapy. Significant advances have been made in detecting RP genes and mutations, with 30–80% detection rates using techniques like next-generation sequencing (NGS), revealing several novel RP genes and clarifying many unresolved cases. However, discrepancies between molecular findings and clinical symptoms often require genetic reevaluation. This review provides a concise overview of the current strategies and challenges in gene discovery and mutation detection in RP. It suggests that these considerations may also be relevant to other inherited retinal diseases. This review examines the RPGR gene’s pivotal role in X-linked RP (XLRP) and associated retinal dystrophies, focusing on its isoforms’ impact on ciliary function and protein trafficking. We discuss the genetic and clinical implications of RPGR mutations, particularly novel pathogenic variants, and their genotype-phenotype correlations. Ultimately, this synthesis aims to enhance understanding of RPGR’s role in retinal dystrophies, informing future research and potential treatments.

Article available in PDF format

View PDF Download PDF file

References

  1. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006; 368(9549): 1795–1809.
  2. von Krusenstiern L, Liu J, Liao E, et al. XIRIUS Part 1 Study GroupXOLARIS Study Group. Changes in Retinal Sensitivity Associated With Cotoretigene Toliparvovec in X-Linked Retinitis Pigmentosa With RPGR Gene Variations. JAMA Ophthalmol. 2023; 141(3): 275–283.
  3. Nassisi M, De Bartolo G, Mohand-Said S, et al. Retrospective Natural History Study of -Related Cone- and Cone-Rod Dystrophies While Expanding the Mutation Spectrum of the Disease. Int J Mol Sci. 2022; 23(13).
  4. Hadalin V, Buscarino M, Sajovic J, et al. Genetic Characteristics and Long-Term Follow-Up of Slovenian Patients with RPGR Retinal Dystrophy. Int J Mol Sci. 2023; 24(4).
  5. Wang Y, Liu S, Zhai Y, et al. Identification of a novel RPGR mutation associated with X-linked cone-rod dystrophy in a Chinese family. BMC Ophthalmol. 2021; 21(1): 401.
  6. Nowomiejska K, Baltaziak K, Całka P, et al. Identification of the RPGR Gene Pathogenic Variants in a Cohort of Polish Male Patients with Retinitis Pigmentosa Phenotype. Genes (Basel). 2023; 14(10).
  7. Tracewska AM, Kocyła-Karczmarewicz B, Rafalska A, et al. Non-syndromic inherited retinal diseases in Poland: Genes, mutations, and phenotypes. Mol Vis. 2021; 27: 457–465.
  8. Skorczyk-Werner A, Chiang WC, Wawrocka A, et al. Autosomal recessive cone-rod dystrophy can be caused by mutations in the ATF6 gene. Eur J Hum Genet. 2017; 25(11): 1210–1216.
  9. Waseem NH, Vaclavik V, Webster A, et al. Mutations in the gene coding for the pre-mRNA splicing factor, PRPF31, in patients with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2007; 48(3): 1330–1334.
  10. Vithana EN, Abu-Safieh L, Pelosini L, et al. Expression of PRPF31 mRNA in patients with autosomal dominant retinitis pigmentosa: a molecular clue for incomplete penetrance? Invest Ophthalmol Vis Sci. 2003; 44(10): 4204–4209.
  11. Bowne SJ, Humphries MM, Sullivan LS, et al. A dominant mutation in RPE65 identified by whole-exome sequencing causes retinitis pigmentosa with choroidal involvement. Eur J Hum Genet. 2011; 19(10): 1074–1081.
  12. Merin S, Auerbach E. Retinitis pigmentosa. Surv Ophthalmol. 1976; 20(5): 303–346.
  13. Novack RL, Foos RY. Drusen of the optic disk in retinitis pigmentosa. Am J Ophthalmol. 1987; 103(1): 44–47.
  14. Heckenlively J, Daiger S. Hereditary retinal and choroidal degenerations. In: Daiger S. ed. Emery and Rimoin’s Princials and Practice of Medical Genetics. 5th edn. Elsevier, Philadelphia 2007: 3197–227.
  15. Li ZY, Possin DE, Milam AH. Histopathology of bone spicule pigmentation in retinitis pigmentosa. Ophthalmology. 1995; 102(5): 805–816.
  16. Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med. 2014; 5(2): a017111.
  17. Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res. 2015; 138: 32–41.
  18. McLaughlin ME, Sandberg MA, Berson EL, et al. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet. 1993; 4(2): 130–134.
  19. Hollingsworth TJ, Gross AK. Defective trafficking of rhodopsin and its role in retinal degenerations. Int Rev Cell Mol Biol. 2012; 293: 1–44.
  20. Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol. 2007; 125(2): 151–158.
  21. RetNet — Retinal Information Network [Internet]. https://web.sph.uth.edu/RetNet/ (8 May 2023).
  22. Comander J, Weigel-DiFranco C, Sandberg MA, et al. Visual Function in Carriers of X-Linked Retinitis Pigmentosa. Ophthalmology. 2015; 122(9): 1899–1906.
  23. Weleber RG, Gregory-Evans K. Retinitis Pigmentosa and Allied Disorders. In: Volume 1 [Internet]. Elsevier Inc.; 2005, p. 395–498. http://www.scopus.com/inward/record.url?scp=84917055945&partnerID=8YFLogxK (8 May 2023).
  24. McWilliam P, Farrar GJ, Kenna P, et al. Autosomal dominant retinitis pigmentosa (ADRP): localization of an ADRP gene to the long arm of chromosome 3. Genomics. 1989; 5(3): 619–622.
  25. Dias MF, Joo K, Kemp JA, et al. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res. 2018; 63: 107–131.
  26. Gao FJ, Wang DD, Chen F, et al. Prevalence and genetic-phenotypic characteristics of patients with mutations in a large cohort of Chinese patients with inherited retinal disease. Br J Ophthalmol. 2021; 105(1): 87–92.
  27. Abd El-Aziz MM, Barragan I, O'Driscoll CA, et al. EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat Genet. 2008; 40(11): 1285–1287.
  28. Cook B, Zelhof AC. Photoreceptors in evolution and disease. Nat Genet. 2008; 40(11): 1275–1276.
  29. Shu X, Fry AM, Tulloch B, et al. RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin. Hum Mol Genet. 2005; 14(9): 1183–1197.
  30. Gakovic M, Shu X, Kasioulis I, et al. The role of RPGR in cilia formation and actin stability. Hum Mol Genet. 2011; 20(24): 4840–4850.
  31. Khanna H. More Than Meets the Eye: Current Understanding of RPGR Function. Adv Exp Med Biol. 2018; 1074: 521–538.
  32. Gakovic M, Shu X, Kasioulis I, et al. The role of RPGR in cilia formation and actin stability. Hum Mol Genet. 2011; 20(24): 4840–4850.
  33. Rao KN, Li L, Anand M, et al. Ablation of retinal ciliopathy protein RPGR results in altered photoreceptor ciliary composition. Sci Rep. 2015; 5: 11137.
  34. Vössing C, Atigbire P, Eilers J, et al. The Major Ciliary Isoforms of RPGR Build Different Interaction Complexes with INPP5E and RPGRIP1L. Int J Mol Sci. 2021; 22(7).
  35. Hong DH, Pawlyk BS, Shang J, et al. A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci U S A. 2000; 97(7): 3649–3654.
  36. He S, Parapuram SK, Hurd TW, et al. Retinitis Pigmentosa GTPase Regulator (RPGR) protein isoforms in mammalian retina: insights into X-linked Retinitis Pigmentosa and associated ciliopathies. Vision Res. 2008; 48(3): 366–376.
  37. Hong DH, Li T. Complex expression pattern of RPGR reveals a role for purine-rich exonic splicing enhancers. Invest Ophthalmol Vis Sci. 2002; 43(11): 3373–3382.
  38. Hosch J, Lorenz B, Stieger K. RPGR: role in the photoreceptor cilium, human retinal disease, and gene therapy. Ophthalmic Genet. 2011; 32(1): 1–11.
  39. Schmid F, Glaus E, Cremers FPM, et al. Mutation- and tissue-specific alterations of RPGR transcripts. Invest Ophthalmol Vis Sci. 2010; 51(3): 1628–1635.
  40. Rao KN, Li L, Zhang W, et al. Loss of human disease protein retinitis pigmentosa GTPase regulator (RPGR) differentially affects rod or cone-enriched retina. Hum Mol Genet. 2016; 25(7): 1345–1356.
  41. Sun X, Park JH, Gumerson J, et al. Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations. Proc Natl Acad Sci U S A. 2016; 113(21): E2925–E2934.
  42. Sharon D, Sandberg MA, Rabe VW, et al. RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa. Am J Hum Genet. 2003; 73(5): 1131–1146.
  43. Talib M, van Schooneveld MJ, Thiadens AA, et al. Clinical and Genetic Characteristics of Male Patients with RPGR-Associated Retinal Dystrophies: A Long-Term Follow-up Study. Retina. 2019; 39(6): 1186–1199.
  44. Tee JJL, Smith AJ, Hardcastle AJ, et al. RPGR-associated retinopathy: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2016; 100(8): 1022–1027.
  45. De Silva SR, Arno G, Robson AG, et al. The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog Retin Eye Res. 2021; 82: 100898.
  46. Vervoort R, Lennon A, Bird AC, et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet. 2000; 25(4): 462–466.
  47. Koller S, Beltraminelli T, Maggi J, et al. Functional Analysis of a Novel, Non-Canonical Splice Variant Causing X-Linked Retinitis Pigmentosa. Genes (Basel). 2023; 14(4).
  48. Nguyen TA, Lehr AW, Roche KW. Neuroligins and Neurodevelopmental Disorders: X-Linked Genetics. Front Synaptic Neurosci. 2020; 12: 33.
  49. Pappalardo J, Heath Jeffery RC, Thompson JA, et al. Progressive sector retinitis pigmentosa due to c.440G>T mutation in in an Australian family. Ophthalmic Genet. 2021; 42(1): 62–70.
  50. Sandberg MA, Rosner B, Weigel-DiFranco C, et al. Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations. Invest Ophthalmol Vis Sci. 2007; 48(3): 1298–1304.
  51. Birtel J, Gliem M, Mangold E, et al. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PLoS One. 2018; 13(12): e0207958.
  52. Gill JS, Georgiou M, Kalitzeos A, et al. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. Br J Ophthalmol. 2019 [Epub ahead of print]; 103(5): 711–720.
  53. Ebenezer ND, Michaelides M, Jenkins SA, et al. Identification of novel RPGR ORF15 mutations in X-linked progressive cone-rod dystrophy (XLCORD) families. Invest Ophthalmol Vis Sci. 2005; 46(6): 1891–1898.
  54. Talib M, van Schooneveld MJ, Thiadens AA, et al. Clinical and genetic characteristics of male patients with RPGR-associated retinal dystrophies. Retina. 2019; 39(6): 1186–1199.
  55. Thiadens AA, Soerjoesing GG, Florijn RJ, et al. Clinical course of cone dystrophy caused by mutations in the RPGR gene. Graefes Arch Clin Exp Ophthalmol. 2011; 249(10): 1527–1535.