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INTRODUCTION
Retinitis pigmentosa (RP) encompasses a varied 

group of hereditary degenerative disorders marked 
by the gradual decline in function of rod and cone 
photoreceptors in the retina. This primarily affects 
photoreceptor and pigment epithelial functions 
and leads to retinal degeneration. RP is the most 
common inherited retinal dystrophy globally, affect-
ing 1 in 4,000 individuals [1].

RP can be inherited in various patterns, includ-
ing autosomal recessive (50–60% of cases), auto-
somal dominant (30–40% of cases), and X-linked 
(5–15% of cases). X-linked RP (XLRP) is one of 
the most severe forms of RP, and a family history 

of the condition is present in about 70% of pa-
tients [1, 2].

The RP GTPase regulator (RPGR) gene, situ-
ated on the X chromosome, has emerged as a sig-
nificant focus in understanding the molecular ge-
netics behind RP and related retinal dystrophies. 
This gene’s mutations are predominantly associated 
with X-linked forms of retinitis pigmentosa (XLRP) 
and, to a lesser extent, with cone dystrophy (COD) 
and cone-rod dystrophy (CORD) [3].

The intricate nature of RPGR, characterized by 
its extensive alternative splicing resulting in multi-
ple isoforms, underscores the complexity of its role 
in the retina and the diversity of phenotypic expres-
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sions observed in affected individuals. Recent stud-
ies have provided substantial insights into the struc-
tural and functional facets of RPGR, particular-
ly highlighting the significance of its major isoforms, 
RPGRex1–19, RPGR ORF15, and RPGRskip14/15, 
in ciliary genesis, maintenance, and protein traffick-
ing within the retina [4].

The loss of RPGR function leads to disrupted 
protein transport, affecting photoreceptor viability 
and causing various forms of retinal dystrophies. 
The pathogenic variants in RPGR have been linked 
to a range of clinical manifestations, with the type 
and severity of the disorder often determined by 
the variant’s specific location within the gene [5].

So far, there has been no dedicated screening 
for disease-causing variants of the RPGR gene in 
the Polish RP patient population. Literature on 
pathogenic variants within the Polish group of in-
dividuals with inherited retinal dystrophies (IRDs) 
is limited [6–8]. 

This review aims to consolidate the current 
understanding of RPGR-related RP, delving into 
the genetic and clinical spectrum associated with 
its mutations. By examining recent advancements 
from cohort studies and case reports, including 
the identification of novel pathogenic variants 
and the exploration of genotype-phenotype cor-
relations, we endeavor to provide a comprehensive 
overview of the role of RPGR in retinal dystrophies. 

HETEROGENEITY OF PATHOLOGY, CLINICAL 
MANIFESTATIONS, AND GENETICS OF RP 

During the early stage, the primary symptom is 
night blindness (nyctalopia), which may manifest 
at various ages, from early childhood to the second 
decade of life or later. Patients might experience 
defects in peripheral visual fields under dim light 
at this stage, but their vision remains normal in 
daylight conditions. Diagnosing RP in the early 
stage is challenging, particularly when there is no 
familial history. Clinical examinations might show 
normal fundus, optic disc, and color vision, while 
electroretinogram (ERG) tests are crucial for better 
understanding the condition. 

In the middle stage, patients become aware of 
the loss of peripheral visual field in daylight condi-
tions, missing objects, or gestures like handshaking. 
Night blindness becomes more evident, making it 
difficult to drive at night or walk in dark environ-
ments. Dyschromatopsia, or difficulty distinguish-
ing light colors (yellow and blue hues), also appears. 

Patients may experience photophobia, particularly 
in diffuse lights, leading to reading problems due to 
lower visual acuity and a narrow window between 
too bright and insufficient light. Clinical examina-
tion at this stage reveals retinal atrophy, bone-spic-
ule-shaped pigments in the midperiphery, a fairly 
pale optic disc, and narrowing of retinal vessels [9].

During the end stage, peripheral vision loss se-
verely impacts patients’ mobility, making it impos-
sible for them to move from one place to another 
without assistance. Reading becomes increasingly 
difficult and ultimately impossible as the central 
visual field deteriorates. Photophobia intensifies, 
and clinical examination shows widespread pigment 
deposits in the macular area, an achromatic optic 
disc, and thin blood vessels. ERG becomes unre-
cordable at this stage [10].

RP typically begins with night blindness, fol-
lowed by a gradual loss of peripheral vision, ulti-
mately leading to central vision loss. However, there 
is significant variability in age of onset, progression 
rate, rod versus cone involvement, and the par-
ticipation of other retinal cells, such as the reti-
nal pigment epithelium (RPE). RP can manifest as 
non-syndromic, lacking other clinical symptoms, 
or as syndromic/systemic RP, which may include 
additional neurosensory disorders, developmen-
tal anomalies, or complex clinical phenotypes. 
Examples of syndromic RP include Usher syn-
drome, marked by RP and congenital or early-onset 
deafness, and Bardet-Biedl syndrome (BBS), char-
acterized by RP along with kidney disease, obesity, 
polydactyly, and developmental delay.

The heterogeneity of RP encompasses genetic, 
allelic, phenotypic, and clinical dimensions. This 
extensive diversity can be perplexing for both pa-
tients and clinicians, posing challenges in diagnosis. 
Enhancing the understanding of RP necessitates 
a more systematic collection of mutation pheno-
type-genotype data for inherited retinal diseases, 
similar to the initiatives undertaken by the Leiden 
Open Variation Database [11].

OCULAR FINDINGS
Classic fundoscopic manifestations of RP are of-

ten characterized by a trio of symptoms: thinning of 
the retinal vessels, pallid optic nerve head, and intra-
retinal pigmentation following a bone-spicule pat-
tern. A study found that 94% of the 384 eyes exam-
ined exhibited retinal vascular thinning, and 52% 
showed optic disc pallor [11].
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Retinal pigmentary changes arise as melanin 
from disintegrating retinal pigment epithelial cells 
relocates to the superficial retina in response to pho-
toreceptor loss [12]. Initially, pigmentary alterations 
present as a subtle scattering from the mid to outer 
peripheral retina. Subsequently, “bone spicules” de-
velop across the mid and outer retinal periphery, 
forming clusters around the retinal vessels [13]. In 
advanced stages of RP, choriocapillaris atrophy may 
reveal underlying larger choroidal vessels.

As the condition progresses to moderate or ad-
vanced phases, the macula or central retina becomes 
compromised, leading to retinal atrophy and dimin-
ishing visual acuity due to ongoing photoreceptor 
degeneration [12]. Some individuals may exhibit 
a central atrophic or bulls-eye lesion.

RP patients might also experience cello-
phane maculopathy (or “surface wrinkling retinop-
athy”) and foveal cysts, with or without accom-
panying edema, further diminishing visual acuity 
beyond that caused by photoreceptor loss. Notably, 
about half of RP patients develop cataracts, espe-
cially posterior subcapsular types [11], with a higher 
incidence in the autosomal dominant variant [14].

Additional observations in RP include the pres-
ence of dust-like pigment granules in the vitre-
ous humor [15] and functional anomalies in refrac-
tive error, visual acuity and fields, contrast sensitiv-
ity, and color perception.

GENETICS
RP can present with various inheritance pat-

terns, such as autosomal dominant, autosomal re-
cessive, X-linked, or mitochondrial, and may man-
ifest as either syndromic or non-syndromic [16]. 
Numerous genes implicated in phototransduction, 
cellular trafficking, and rhodopsin recycling path-
ways have been identified [17]. 

While the impact of these mutations on 
the functioning of photoreceptors is understood, 
the exact processes causing their deterioration are 
still undefined. It’s vital to determine and under-
stand the shared pathways of cell death in the varied 
landscape of RP to create therapies effective across 
all gene variations causing the disease. This review 
synthesizes recent studies to identify the cell death 
routes implicated in RP and how specific mutations 
trigger these pathways [19].

Different symptoms may arise in various indi-
viduals with the same genetic mutation, and dis-
tinct mutations can cause the same syndrome [20].

In the last 20 years, significant progress has 
been made in pinpointing genes linked to inherited 
retinal diseases like RP, leading to a more complex 
understanding of the relationship between genes, 
mutations, and clinical symptoms. This understand-
ing not only deepens our knowledge of vision but 
also sheds light on retinal disease mechanisms. From 
a clinical perspective, two crucial questions emerge: 
the status of mutation identification in patients 
and the implications for clinical practice. While 
focused on RP, this discussion is relevant to other 
inherited eye conditions. RP is characterized by di-
verse inheritance patterns and genetic causes. A sin-
gle mutation can manifest differently in individuals 
(phenotypic pleiotropy), and different mutations 
can cause the same condition (allelic heterogeneity). 
The RetNet website provides a comprehensive list of 
RP-related genes [21].

Determining the exact genetic defect causing 
RP offers multiple advantages, including verifying 
RP diagnosis in uncertain situations, predicting 
the outlook for patients and the risk for relatives, 
identifying specific RP variants to qualify for clini-
cal trials as targeted therapies emerge, and isolating 
the root of the disease to deepen knowledge of 
retinal biology and disease processes. In the United 
States, non-syndromic RP, which typically presents 
symptoms confined to the eye, constitutes approx-
imately 65% of all RP cases [20]. The inheritance 
patterns for these cases are distributed as follows: 
approximately 30% autosomal dominant, 20% au-
tosomal recessive, 15% X-linked, and 5% recessive 
early-onset [Leber congenital amaurosis (LCA)]. 
The remaining 30% are sporadic.

In autosomal dominant RP, there’s a 50% chance 
that an affected individual’s children will inherit 
the condition. For autosomal recessive RP, when 
both parents are carriers, each child has a 25% 
chance of being affected. Usually, males are the ones 
who manifest X-linked RP. However, female carri-
ers of the X-linked RP gene can also show signs of 
visual impairment [22]. Affected males won’t trans-
mit the defective gene to their sons, but all their 
daughters will inherit the carrier status. If there’s 
no known RP in the family and the abnormal gene 
remains undetected, the chance of children having 
RP drops below 5%, except in instances of blood 
relation (consanguinity) within the family [23].

Beyond standard RP types, syndromic variants 
affect multiple organs. The most common, Usher 
syndrome, involves early hearing loss and subse-
quent RP. Bardet-Biedl syndrome, another prevalent 
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form, includes extra fingers or toes, obesity, kidney 
issues, and intellectual delays. Nephronophthisis 
(NPHP) gene mutations lead to early kidney fail-
ure and RP. Through family studies, many genetic 
regions linked to RP have been discovered, with 
the first identified mutation in the rhodopsin gene 
(RHO) on chromosome 3q21.3 in 1989 [24].

In 1990, researchers discovered that a pro-
line-to-histidine change at the 23rd amino acid of 
rhodopsin, a light-sensitive pigment in rod cell mem-
branes, accounts for 10% of autosomal dominant 
RP cases among the White population in the United 
States. The identification of RP-related mutations has 
accelerated significantly, with over 3000 mutations 
across approximately 70 genes now recognized [25].

Non-syndromic RP is linked to 71 genes, while 
syndromic RP involves 66 genes, and LCA is associ-
ated with 14 genes. The proteins these genes encode 
are engaged in various functions, including pho-
totransduction processes, vitamin A metabolism, 
cytoskeletal components, communication and sig-
naling, RNA splicing, protein transport, and phago-
cytosis. As of 2007, the three most common genes 
related to RP, making up about 30% of all cases, are 
RHO (over 26% of autosomal dominant RP cases), 
USH2A (Usherin) (10% of autosomal recessive RP 
cases and also implicated in both non-syndromic 
RP and Usher syndrome), and RPGR; approximate-
ly 75% of X-linked RP [26].

In 2008, another gene, EYS — a homolog of 
Drosophila eyes shut was identified as the gene 
responsible for autosomal recessive RP at the RP25 
locus [27].

This gene is implicated in a substantial number 
of autosomal recessive RP cases across various global 
ancestries. EYS, the largest eye gene spanning more 
than 2 million base pairs, is believed to contribute 
to a protein essential for the structural integrity 
of the eye’s outer segment. Mutations linked to 
the disease are identified in over 50% of autosomal 
dominant RP cases, 30% of recessive RP cases, 70% 
of recessive LCA cases, and nearly 90% of X-linked 
RP cases [28]. 

MOLECULAR GENETICS OF THE RPGR GENE 
The RPGR gene is situated in the Xp11.4 chro-

mosomal region, covering 172 kb and comprising 
up to 22 exons, depending on the splicing process 
[29, 30].

The RPGR protein is detected in a range of hu-
man tissues, including the lungs, kidneys, testes, 

brain, and particularly the retina [31]. It is located 
in the transitional area of primary and motile cilia, 
as well as in centrosomes and centrioles of cells un-
dergoing division [32]. While its precise function in 
the retina has yet to be fully understood, the RPGR 
gene is believed to play a vital role in the formation, 
maintenance, and functionality of cilia, including 
protein trafficking and organization [17]. The role 
of RPGR as a guanine nucleotide exchange factor 
(GEF) for small guanine triphosphatases (GTPases) 
may be essential for transporting substances to 
the outer segments of photoreceptors [33].

Research indicates that mouse photorecep-
tor cells can form properly, conduct light signals, 
and stay alive for the first few months without 
the RPGR protein. However, over time, the lack 
of RPGR disrupts the movement of proteins to 
the photoreceptors’ outer segments, and the partial 
displacement of opsins seems to diminish the sur-
vival of these cells [34]. Therefore, RPGR’s role in 
ciliary operations doesn’t seem to be essential but 
rather supportive, playing a crucial part in the pro-
longed preservation of photoreceptors [35].

Due to alternative splicing, over 20 distinct 
RPGR isoforms have been identified [36, 37]. 

In the retina, three main RPGR isoforms 
are prevalent: RPGRex1–19, RPGR ORF15, 
and RPGRskip14/15. RPGRex1–19 is derived from 
exons 1–19, RPGR ORF15 from exons 1–14 (shared 
with RPGRex1–19) and the additional ORF15 exon, 
which includes exon 15 and part of intron 15 at 
the 3’ end [38], and RPGRskip14/15 is generated 
through an alternative splicing process [39].

Although the RPGR ORF15 isoform has fewer 
exons than RPGRex1–19, its ORF15 exon exceeds 
the total length of exons 16–19. This exon fea-
tures a large 1.5 kb sequence of purine-rich re-
peats and encodes a 560 amino acid protein do-
main, ending with a sequence of basic amino acids 
known as the RPGR-C2 domain (1071–1152 ami-
no acids). The Glu-Gly region of RPGR is similar 
to the polyglutamated sections of alpha-tubulin 
[40]. The glutamylation process in RPGR ORF15 
is regulated by the tubulin-tyrosine ligase-like 5 
(TTLL5) enzyme, which is linked to various retinal 
dystrophies [41].

RETINAL DYSTROPHIES ASSOCIATED 
WITH THE RPGR GENE 

Mutations in the RPGR gene can lead to various 
retinal conditions, such as RP in 70–90% of cases, 
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cone dystrophy (COD) in about 7%, and cone-rod 
dystrophy (CORD) in approximately 6–23% [42, 
43]. Studies suggest that the specific disorder may 
depend on the mutation’s location: mutations in 
exons 1–14 and the initial segment of the ORF15 
exon are typically associated with RP. In contrast, 
mutations in the latter part of the ORF15 exon are 
linked to COD/CORD [44, 45]. The ORF15 exon, 
which encodes a highly repetitive domain, is con-
sidered a mutational hot spot, as most disease-as-
sociated variations are truncating [46]. De Silva et 
al. identified a critical zone of approximately 100 
amino acids between these regions where variations 
can lead to either phenotype [47].

X-linked inheritance is rare in COD/CORD 
(only 1%) [48], but the RPGR gene is responsible 
for 73% of COD/CORD cases [49]. Primary symp-
toms include reduced VA, abnormal color vision, 
central scotoma, and photophobia. These symp-
toms are associated with variations in all isoforms, 
though conflicting reports exist regarding the asso-
ciation between the location of the variation within 
the RPGR gene and disease severity. Signs of rod 
dysfunction may develop as the disease progresses, 
and patients may also experience night blindness 
and peripheral VF loss [50].

Unlike RP, symptom onset in COD/CORD oc-
curs later (in the fourth decade) but can progress 
to blindness relatively quickly by 40–50 years of 
age [51, 52]. In a study by Nassisi et al., the rate 
of best-corrected visual acuity (BCVA) decline was 
assessed at about 7% per year, with most patients 
reaching a BCVA ≥ 1 logMAR during the fifth de-
cade of life [3].

CONCLUSIONS
This review emphasizes the significance of 

the RPGR gene in the pathogenesis of RP and re-
lated retinal dystrophies. The genetic and pheno-
typic diversity of RP, especially due to various 
RPGR mutations, presents diagnostic and thera-
peutic challenges. Understanding the gene’s role 
in ciliary function and photoreceptor maintenance 
is key to advancing targeted therapies. The sever-
ity and progression of RPGR-related disorders 
are mutation-specific, necessitating precise genetic 
identification for prognosis and treatment plan-
ning. Ongoing research and comprehensive genetic 
screening are essential to improving management 
and outcomes for individuals with these complex 
retinal conditions.
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