Online first
Wytyczne / stanowisko ekspertów
Opublikowany online: 2024-03-25
Wyświetlenia strony 220
Wyświetlenia/pobrania artykułu 25
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Zalecenia dotyczące stosowania pozytonowej emisyjnej tomografii w onkologii

Leszek Królicki1, Maciej Krzakowski2, Bogna Brockhuis3, Rafał Czepczyński4, Marek Dedecjus2, Mirosław Dziuk5, Daria Handkiewicz-Junak6, Jacek Jassem3, Andrzej Kawecki2, Tomasz Kubiatowski7, Jolanta Kunikowska1, Radosław Mądry4, Piotr Rutkowski2, Anna Sowa-Staszczak8, Piotr Wysocki8, Renata Zaucha3

Streszczenie

Pozytonowa emisyjna tomografia (PET) w połączeniu z komputerową tomografią (KT) lub obrazowaniem techniką magnetycznego rezonansu (MR) — PET/KT lub PET/MR — jest ważnym narzędziem w wielospecjalistycznym postępowaniu u chorych na nowotwory. Artykuł jest przeglądem obecnej wiedzy na temat stosowania badań PET/KT i PET/MR w rozpoznawaniu, określaniu zaawansowania, ocenie odpowiedzi i obserwacji po leczeniu dorosłych chorych na nowotwory. Zalecenia są przygotowane przez wielospecjalistyczny zespół autorów na podstawie naukowych dowodów.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 95,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Boellaard R, Delgado-Bolton R, Oyen WJG, et al. European Association of Nuclear Medicine (EANM). FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015; 42(2): 328–354.
  2. Franquet E, Park H. Molecular imaging in oncology: Common PET/CT radiopharmaceuticals and applications. Eur J Radiol Open. 2022; 9: 100455.
  3. Wang H, Li G, Zhao J, et al. Current status of PSMA-targeted imaging and therapy. Front Oncol. 2023; 13: 1230251.
  4. Becker M, de Vito C, Dulguerov N, et al. PET/MR Imaging in Head and Neck Cancer. Magn Reson Imaging Clin N Am. 2023; 31(4): 539–564.
  5. Cheung PKF, Chin RY, Eslick GD. Detecting Residual/Recurrent Head Neck Squamous Cell Carcinomas Using PET or PET/CT: Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg. 2016; 154(3): 421–432.
  6. Dunsky KA, Wehrmann DJ, Osman MM, et al. PET-CT and the detection of the asymptomatic recurrence or second primary lesions in the treated head and neck cancer patient. Laryngoscope. 2013; 123(9): 2161–2164.
  7. Heineman TE, Kuan EC, St John MA. When should surveillance imaging be performed after treatment for head and neck cancer? Laryngoscope. 2017; 127(3): 533–534.
  8. Ho AS, Tsao GJ, Chen FW, et al. Impact of positron emission tomography/computed tomography surveillance at 12 and 24 months for detecting head and neck cancer recurrence. Cancer. 2013; 119(7): 1349–1356.
  9. Jadvar H, Colletti PM, Delgado-Bolton R, et al. Appropriate Use Criteria for F-FDG PET/CT in Restaging and Treatment Response Assessment of Malignant Disease. J Nucl Med. 2017; 58(12): 2026–2037.
  10. Leclere JC, Delcroix O, Rousset J, et al. Integration of 18-FDG PET/CT in the Initial Work-Up to Stage Head and Neck Cancer: Prognostic Significance and Impact on Therapeutic Decision Making. Front Med (Lausanne). 2020; 7: 273.
  11. Mehanna H, Wong WL, McConkey CC, et al. PET-NECK Trial Management Group. PET-CT Surveillance versus Neck Dissection in Advanced Head and Neck Cancer. N Engl J Med. 2016; 374(15): 1444–1454.
  12. Ng SP, Pollard C, Berends J, et al. Usefulness of surveillance imaging in patients with head and neck cancer who are treated with definitive radiotherapy. Cancer. 2019; 125(11): 1823–1829.
  13. Paleri V, Urbano TG, Mehanna H, et al. Management of neck metastases in head and neck cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016; 130(S2): S161–S169.
  14. Pantvaidya GH, Agarwal JP, Deshpande MS, et al. PET-CT in recurrent head neck cancers: a study to evaluate impact on patient management. J Surg Oncol. 2009; 100(5): 401–403.
  15. Van den Bosch S, Doornaert P, Dijkema T, et al. 18F-FDG-PET/CT-based treatment planning for definitive (chemo)radiotherapy in patients with head and neck squamous cell carcinoma improves regional control and survival. Radiother Oncol. 2020; 142: 107–114.
  16. Afshar-Oromieh A, Wolf MB, Kratochwil C, et al. Detection of cranial meningiomas: comparison of ⁶⁸Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging. 2012; 39(9): 1409–1415.
  17. Albert NL, Galldiks N, Ellingson BM, et al. PET-based response assessment criteria for diffuse gliomas (PET RANO 1.0): a report of the RANO group. Lancet Oncol. 2024; 25(1): e29–e41.
  18. Albert NL, Weller M, Suchorska B, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016; 18(9): 1199–1208.
  19. Barajas RF, Politi LS, Anzalone N, et al. Consensus recommendations for MRI and PET imaging of primary central nervous system lymphoma: guideline statement from the International Primary CNS Lymphoma Collaborative Group (IPCG). Neuro Oncol. 2021; 23(7): 1056–1071.
  20. Galldiks N, Albert NL, Sommerauer M, et al. PET imaging in patients with meningioma-report of the RANO/PET Group. Neuro Oncol. 2017; 19(12): 1576–1587.
  21. Galldiks N, Langen KJ, Albert NL, et al. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol. 2019; 21(5): 585–595.
  22. Galldiks N, Niyazi M, Grosu AL, et al. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol. 2021; 23(6): 881–893.
  23. Gupta T, Manjali JJ, Kannan S, et al. Diagnostic Performance of Pretreatment 18F-Fluorodeoxyglucose Positron Emission Tomography With or Without Computed Tomography in Patients With Primary Central Nervous System Lymphoma: Updated Systematic Review and Diagnostic Test Accuracy Meta-analyses. Clin Lymphoma Myeloma Leuk. 2021; 21(8): 497–507.
  24. Hatakeyama J, Ono T, Takahashi M, et al. Differentiating between Primary Central Nervous System Lymphoma and Glioblastoma: The Diagnostic Value of Combining F-fluorodeoxyglucose Positron Emission Tomography with Arterial Spin Labeling. Neurol Med Chir (Tokyo). 2021; 61(6): 367–375.
  25. Law I, Albert NL, Arbizu J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019; 46(3): 540–557.
  26. Makino K, Hirai T, Nakamura H, et al. Does adding FDG-PET to MRI improve the differentiation between primary cerebral lymphoma and glioblastoma? Observer performance study. Ann Nucl Med. 2011; 25(6): 432–438.
  27. Okada H, Weller M, Huang R, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015; 16(15): e534–e542.
  28. Rachinger W, Stoecklein VM, Terpolilli NA, et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med. 2015; 56(3): 347–353.
  29. Verger A, Arbizu J, Law I. Role of amino-acid PET in high-grade gliomas: limitations and perspectives. Q J Nucl Med Mol Imaging. 2018; 62(3): 254–266.
  30. Verger A, Kas A, Darcourt J, et al. PET Imaging in Neuro-Oncology: An Update and Overview of a Rapidly Growing Area. Cancers (Basel). 2022; 14(5).
  31. Wen P, Bent Mv, Vogelbaum M, et al. RANO 2.0: The revised Response Assessment in Neuro-Oncology (RANO) criteria for high- and low-grade glial tumors in adults designed for the future. Neuro Oncol. 2023; 26(1): 2–4.
  32. Ettinger DS., Wood DE, Aigner D, et al. NCCN Guidelines: non-small-cell lung cancer – version 3.2023. www.nccn.org./professionals/physician.gls/pdf.
  33. Ettinger DS., Wood DE, Riely GJ, et al. NCCN Guidelines: thymoma and thymic carcinoma – version 1.2023. www.nccn.org./professionals/physician.gls/pdf.
  34. Ettinger DS., Wood DE, Stevenson J, et al. NCCN Guidelines: mesothelioma pleural – version 1.2023. www.nccn.org./professionals/physician.gls/pdf.
  35. Ganti AKP, Loo BW, Bassetti M, et al. NCCN Guidelines: small-cell lung cancer – version 3.2023. www.nccn.org./professionals/physician.gls/pdf.
  36. Sinha S, Swift AJ, Kamil MA, et al. The role of imaging in malignant pleural mesothelioma: an update after the 2018 BTS guidelines. Clin Radiol. 2020; 75(6): 423–432.
  37. Volpi S, Ali JM, Tasker A, et al. The role of positron emission tomography in the diagnosis, staging and response assessment of non-small cell lung cancer. Ann Transl Med. 2018; 6(5): 95.
  38. Bertagna F, Treglia G, Orlando E, et al. Prevalence and clinical significance of incidental F18-FDG breast uptake: a systematic review and meta-analysis. Jpn J Radiol. 2014; 32(2): 59–68.
  39. Han S, Choi JY. Impact of 18F-FDG PET, PET/CT, and PET/MRI on Staging and Management as an Initial Staging Modality in Breast Cancer: A Systematic Review and Meta-analysis. Clin Nucl Med. 2021; 46(4): 271–282.
  40. Han S, Choi JY. Impact of 18F-FDG PET, PET/CT, and PET/MRI on Staging and Management as an Initial Staging Modality in Breast Cancer: A Systematic Review and Meta-analysis. Clin Nucl Med. 2021; 46(4): 271–282.
  41. Jassem J, Kowalczyk A, Biesiada A, et al. Post-treatment follow-up in common solid malignancies: expert panel recommendations. Nowotwory. Journal of Oncology. 2022; 72(6): 384–407.
  42. Kasem J, Wazir U, Mokbel K. Sensitivity, Specificity and the Diagnostic Accuracy of PET/CT for Axillary Staging in Patients With Stage I-III Cancer: A Systematic Review of The Literature. In Vivo. 2021; 35(1): 23–30.
  43. Lei L, Wang X, Chen Z. PET/CT Imaging for Monitoring Recurrence and Evaluating Response to Treatment in Breast Cancer. Adv Clin Exp Med. 2016; 25(2): 377–382.
  44. NCCN Guidelines Insights: Breast Cancer, Version 4.2023. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf.
  45. Paydary K, Seraj SM, Zadeh MZ, et al. The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer. Mol Imaging Biol. 2019; 21(1): 1–10.
  46. Ulaner GA. PET/CT for Patients With Breast Cancer: Where Is the Clinical Impact? AJR Am J Roentgenol. 2019; 213(2): 254–265.
  47. Vercher-Conejero JL, Pelegrí-Martinez L, Lopez-Aznar D, et al. Positron Emission Tomography in Breast Cancer. Diagnostics (Basel). 2015; 5(1): 61–83.
  48. Zucchini G, Quercia S, Zamagni C, et al. Potential utility of early metabolic response by 18F-2-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in a selected group of breast cancer patients receiving preoperative chemotherapy. Eur J Cancer. 2013; 49(7): 1539–1545.
  49. Bhatla N, Berek JS, Cuello Fredes M, et al. Revised FIGO staging for carcinoma of the cervix uteri. Int J Gynaecol Obstet. 2019; 145(1): 129–135.
  50. Fiaschetti V, Calabria F, Crusco S, et al. MR-PET fusion imaging in evaluating adnexal lesions: a preliminary study. Radiol Med. 2011; 116(8): 1288–1302.
  51. https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf.
  52. https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf (version 2.2023).
  53. https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf (version 1.2024).
  54. Ironi G, Mapelli P, Bergamini A, et al. Hybrid PET/MRI in Staging Endometrial Cancer: Diagnostic and Predictive Value in a Prospective Cohort. Clin Nucl Med. 2022; 47(3): e221–e229.
  55. Kitajima K, Suzuki K, Senda M, et al. FDG-PET/CT for diagnosis of primary ovarian cancer. Nucl Med Commun. 2011; 32(7): 549–553.
  56. Nguyen N, Beriwal S, Moon CH, et al. 18F-FDG PET/MRI Primary Staging of Cervical Cancer: A Pilot Study with PET/CT Comparison. J Nucl Med Technol. 2020; 48(4): 331–335.
  57. Nunes RL, Teixeira FR, Diniz TP, et al. The value of PET/CT for cytoreductive surgery selection in recurrent ovarian carcinoma. J Gynecol Oncol. 2023; 34(3): e31.
  58. Sarabhai T, Schaarschmidt BM, Wetter A, et al. Comparison of F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix. Eur J Nucl Med Mol Imaging. 2018; 45(1): 67–76.
  59. Steiner A, Narva S, Rinta-Kiikka I, et al. Diagnostic efficiency of whole-body F-FDG PET/MRI, MRI alone, and SUV and ADC values in staging of primary uterine cervical cancer. Cancer Imaging. 2021; 21(1): 16.
  60. Tsuyoshi H, Tsujikawa T, Yamada S, et al. FDG-PET/MRI with high-resolution DWI characterises the distinct phenotypes of endometrial cancer. Clin Radiol. 2020; 75(3): 209–215.
  61. Tsuyoshi H, Tsujikawa T, Yamada S, et al. Diagnostic Value of F-FDG PET/MRI for Revised 2018 FIGO Staging in Patients with Cervical Cancer. Diagnostics (Basel). 2021; 11(2).
  62. Tsuyoshi H, Tsujikawa T, Yamada S, et al. Diagnostic value of [F]FDG PET/MRI for staging in patients with ovarian cancer. EJNMMI Res. 2020; 10(1): 117.
  63. Vallius T, Peter A, Auranen A, et al. 18F-FDG-PET/CT can identify histopathological non-responders to platinum-based neoadjuvant chemotherapy in advanced epithelial ovarian cancer. Gynecol Oncol. 2016; 140(1): 29–35.
  64. Wang T, Sun H, Han F, et al. Evaluation of parametrial infiltration in cervical cancer with voxel-based segmentation of integrated F-FDG PET/MRI images: A preliminary study. Eur J Radiol. 2019; 118: 147–152.
  65. Zheng M, Xie D, Pan C, et al. Diagnostic value of 18F-FDG PET/MRI in recurrent pelvis malignancies of female patients: a systematic review and meta-analysis. Nucl Med Commun. 2018; 39(6): 479–485.
  66. Anton A, Ballok Z, Bowden P, et al. Using PSMA PET/CT to assess response in metastatic prostate cancer (mPC) patients (pts) receiving upfront chemohormonal therapy. Ann Oncol. 2018; 29: ix70–ix71.
  67. Beauregard JM, Williams SG, Degrado TR, et al. Pilot comparison of F-fluorocholine and F-fluorodeoxyglucose PET/CT with conventional imaging in prostate cancer. J Med Imaging Radiat Oncol. 2010; 54(4): 325–332.
  68. Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004; 6(supl 10): S13–S18.
  69. Chen R, Wang Y, Zhu Y, et al. The added value of F-FDG PET/CT compared to Ga-PSMA PET/CT in patients with castration-resistant prostate cancer. J Nucl Med. 2021 [Epub ahead of print]; 63(1): 69–75.
  70. Fendler WP, Calais J, Eiber M, et al. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol. 2019; 5(6): 856–863.
  71. Girard A, Vila Reyes H, Shaish H, et al. The Role of 18F-FDG PET/CT in Guiding Precision Medicine for Invasive Bladder Carcinoma. Front Oncol. 2020; 10: 565086.
  72. Hoffmann MA, Buchholz HG, Wieler HJ, et al. PSA and PSA Kinetics Thresholds for the Presence of Ga-PSMA-11 PET/CT-Detectable Lesions in Patients With Biochemical Recurrent Prostate Cancer. Cancers (Basel). 2020; 12(2).
  73. Hofman M, Emmett L, Sandhu S, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021; 397(10276): 797–804.
  74. Hofman M, Lawrentschuk N, Francis R, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020; 395(10231): 1208–1216.
  75. Kanamaru H, Oyama N, Akino H, et al. [Evaluation of prostate cancer using FDG-PET]. Hinyokika Kiyo. 2000; 46(11): 851–853.
  76. Kratochwil C, Fendler WP, Eiber M, et al. Joint EANM/SNMMI procedure guideline for the use of Lu-labeled PSMA-targeted radioligand-therapy (Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2023; 50(9): 2830–2845.
  77. Park JW, Jo MKi, Lee HM. Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int. 2009; 103(5): 615–619.
  78. Sadeghi R, Gholami H, Zakavi SR, et al. Accuracy of 18F-FDG PET/CT for diagnosing inguinal lymph node involvement in penile squamous cell carcinoma: systematic review and meta-analysis of the literature. Clin Nucl Med. 2012; 37(5): 436–441.
  79. Scher B, Seitz M, Reiser M, et al. 18F-FDG PET/CT for staging of penile cancer. J Nucl Med. 2005; 46(9): 1460–1465.
  80. Treglia G, Sadeghi R, Annunziata S, et al. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in the postchemotherapy management of patients with seminoma: systematic review and meta-analysis. Biomed Res Int. 2014; 2014: 852681.
  81. Verwer EE, Oprea-Lager DE, van den Eertwegh AJM, et al. Quantification of 18F-fluorocholine kinetics in patients with prostate cancer. J Nucl Med. 2015; 56(3): 365–371.
  82. Zattoni F, Incerti E, Dal Moro F, et al. F-FDG PET/CT and Urothelial Carcinoma: Impact on Management and Prognosis-A Multicenter Retrospective Study. Cancers (Basel). 2019; 11(5).
  83. https://www.nccn.org/professionals/physician_gls/pdf/anal.pdf.
  84. https://www.nccn.org/professionals/physician_gls/pdf/btc.pdf.
  85. https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf.
  86. https://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf.
  87. https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf.
  88. https://www.nccn.org/professionals/physician_gls/pdf/hcc.pdf.
  89. https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf.
  90. Krzakowski M, Potemski P, Wysocki P. (ed.). Onkologia Kliniczna (wyd II). Via Medica, Gdańsk 2023.
  91. The Royal College of Radiologists, Royal College of Physicians, British Nuclear Medicine Society, Administration of Radioactive Substances Advisory Committee. Evidence-based indications for the use of PET-CT in the United Kingdom 2022. https://www.rcr.ac.uk/publication/evidence-based-indications-use-pet-ct-united-kingdom-2022.
  92. Almeida LS, Araújo ML, Santos AO, et al. Head-to-head comparison of F-18 FDG PET/CT in radioidine refractory thyroid cancer patients with elevated versus suppressed TSH levels a pilot study. Heliyon. 2020; 6(3): e03450.
  93. Almeida L, Araújo M, Santos A, et al. Head-to-head comparison of F-18 FDG PET/CT in radioidine refractory thyroid cancer patients with elevated versus suppressed TSH levels a pilot study. Heliyon. 2020; 6(3): e03450.
  94. Fassnacht M, Assie G, Baudin E, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Adrenocortical carcinomas and malignant phaeochromocytomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020; 31(11): 1476–1490.
  95. Jarząb B, Dedecjus M, Lewiński A, et al. Diagnosis and treatment of thyroid cancer in adult patients — Recommendations of Polish Scientific Societies and the National Oncological Strategy. 2022 Update [Diagnostyka i leczenie raka tarczycy u chorych dorosłych — Rekomendacje Polskich Towarzystw Naukowych oraz Narodowej Strategii Onkologicznej. Aktualizacja na rok 2022]. Endokrynol Pol. 2022; 73(2): 173–300.
  96. Kos-Kudła B, Foltyn W, Malczewska A, et al. Update of the diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours) [Aktualizacja zaleceń ogólnych dotyczących postępowania diagnostyczno-terapeutycznego w nowotworach neuroendokrynnych układu pokarmowego (rekomendowane przez Polską Sieć Guzów Neuroendokrynnych)]. Endokrynol Pol. 2022; 73(3): 387–454.
  97. Leboulleux S, Schroeder PR, Busaidy NL, et al. Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab. 2009; 94(4): 1310–1316.
  98. Panzuto F, Ramage J, Pritchard DM, et al. European Neuroendocrine Tumor Society (ENETS) 2023 guidance paper for gastroduodenal neuroendocrine tumours (NETs) G1-G3. J Neuroendocrinol. 2023; 35(8): e13306.
  99. Poisson T, Deandreis D, Leboulleux S, et al. 18F-fluorodeoxyglucose positron emission tomography and computed tomography in anaplastic thyroid cancer. Eur J Nucl Med Mol Imaging. 2010; 37(12): 2277–2285.
  100. Qichang W, Lin B, Gege Z, et al. Diagnostic performance of 18F-FDG-PET/CT in DTC patients with thyroglobulin elevation and negative iodine scintigraphy: a meta-analysis. Eur J Endocrinol. 2019; 181(2): 93–102.
  101. Smallridge RC, Ain KB, Asa SL, et al. American Thyroid Association Anaplastic Thyroid Cancer Guidelines Taskforce. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 2012; 22(11): 1104–1139.
  102. Antoch G, Kanja J, Bauer S, et al. Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med. 2004; 45(3): 357–365.
  103. Ayati N, Jamshidi-Araghi Z, Hoellwerth M, et al. Predictive value and accuracy of [F]FDG PET/CT modified response criteria for checkpoint immunotherapy in patients with advanced melanoma. Eur J Nucl Med Mol Imaging. 2023; 50(9): 2715–2726.
  104. Barsky M, Cherkassky L, Vezeridis M, et al. The role of preoperative positron emission tomography/computed tomography (PET/CT) in patients with high-risk melanoma. J Surg Oncol. 2014; 109(7): 726–729.
  105. Bastiaannet E, Groen H, Jager PL, et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev. 2004; 30(1): 83–101.
  106. Bastiaannet E, Oyen WJG, Meijer S, et al. Impact of [18F]fluorodeoxyglucose positron emission tomography on surgical management of melanoma patients. Br J Surg. 2006; 93(2): 243–249.
  107. Bastiaannet E, Uyl-de Groot CA, Brouwers AH, et al. Cost-effectiveness of adding FDG-PET or CT to the diagnostic work-up of patients with stage III melanoma. Ann Surg. 2012; 255(4): 771–776.
  108. Bourgeois AC, Chang TT, Fish LM, et al. Positron emission tomography/computed tomography in melanoma. Radiol Clin North Am. 2013; 51(5): 865–879.
  109. Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007; 25(13): 1753–1759.
  110. Costelloe CM, Chuang HH, Madewell JE. FDG PET/CT of primary bone tumors. AJR Am J Roentgenol. 2014; 202(6): W521–W531.
  111. Dimitriou F, Lo SN, Tan AC, et al. FDG-PET to predict long-term outcome from anti-PD-1 therapy in metastatic melanoma. Ann Oncol. 2022; 33(1): 99–106.
  112. El-Maraghi RH, Kielar AZ. PET vs sentinel lymph node biopsy for staging melanoma: a patient intervention, comparison, outcome analysis. J Am Coll Radiol. 2008; 5(8): 924–931.
  113. Evilevitch V, Weber WA, Tap WD, et al. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res. 2008; 14(3): 715–720.
  114. Farag S, Geus-Oei LFde, van der Graaf WT, et al. Early Evaluation of Response Using F-FDG PET Influences Management in Gastrointestinal Stromal Tumor Patients Treated with Neoadjuvant Imatinib. J Nucl Med. 2018; 59(2): 194–196.
  115. Ferdinandus J, Zaremba A, Zimmer L, et al. Metabolic imaging with FDG-PET and time to progression in patients discontinuing immune-checkpoint inhibition for metastatic melanoma. Cancer Imaging. 2022; 22(1): 11.
  116. Filippi L, Bianconi F, Schillaci O, et al. The Role and Potential of F-FDG PET/CT in Malignant Melanoma: Prognostication, Monitoring Response to Targeted and Immunotherapy, and Radiomics. Diagnostics (Basel). 2022; 12(4).
  117. Franzius C, Sciuk J, Brinkschmidt C, et al. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med. 2000; 25(11): 874–881.
  118. Gao G, Gong B, Shen W. Meta-analysis of the additional value of integrated 18FDG PET-CT for tumor distant metastasis staging: comparison with 18FDG PET alone and CT alone. Surg Oncol. 2013; 22(3): 195–200.
  119. Gayed I, Vu T, Iyer R, et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med. 2004; 45(1): 17–21.
  120. Geitenbeek RTJ, Martin E, Graven LH, et al. Diagnostic value of F-FDG PET-CT in detecting malignant peripheral nerve sheath tumors among adult and pediatric neurofibromatosis type 1 patients. J Neurooncol. 2022; 156(3): 559–567.
  121. Goerres GW, Stupp R, Barghouth G, et al. The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate. Eur J Nucl Med Mol Imaging. 2005; 32(2): 153–162.
  122. Gulec SA, Faries MB, Lee CC, et al. The role of fluorine-18 deoxyglucose positron emission tomography in the management of patients with metastatic melanoma: impact on surgical decision making. Clin Nucl Med. 2003; 28(12): 961–965.
  123. Hawkins DS, Schuetze SM, Butrynski JE, et al. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005; 23(34): 8828–8834.
  124. Holdsworth CH, Badawi RD, Manola JB, et al. CT and PET: early prognostic indicators of response to imatinib mesylate in patients with gastrointestinal stromal tumor. AJR Am J Roentgenol. 2007; 189(6): W324–W330.
  125. Jager PL, Gietema JA, van der Graaf WTA. Imatinib mesylate for the treatment of gastrointestinal stromal tumours: best monitored with FDG PET. Nucl Med Commun. 2004; 25(5): 433–438.
  126. Khamly KK, Hicks RJ, McArthur GA, et al. The promise of PET in clinical management and as a sensitive test for drug cytotoxicity in sarcomas. Expert Rev Mol Diagn. 2008; 8(1): 105–119.
  127. Krug B, Crott R, Lonneux M, et al. Role of PET in the initial staging of cutaneous malignant melanoma: systematic review. Radiology. 2008; 249(3): 836–844.
  128. McAuliffe JC, Hunt KK, Lazar AJF, et al. A randomized, phase II study of preoperative plus postoperative imatinib in GIST: evidence of rapid radiographic response and temporal induction of tumor cell apoptosis. Ann Surg Oncol. 2009; 16(4): 910–919.
  129. Mesnard C, Bodet-Milin C, Eugène T, et al. Predictive value of FDG-PET imaging for relapse in metastatic melanoma patients treated with immunotherapy. J Eur Acad Dermatol Venereol. 2020; 34(10): 2261–2267.
  130. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Melanoma: Cutaneous. Version 2.2023 — March 10, 2023.
  131. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Merkel Cell Carcinoma. Version 1.2023 — April 10, 2023.
  132. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Soft tissue sarcoma Version 1.202.
  133. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Bone Cancer. Version 1.2023.
  134. Oberholzer PA, Urosevic M, Steinert HC, et al. Baseline staging of melanoma with unknown primary site: the value of serum s100 protein and positron emission tomography. Dermatology. 2008; 217(4): 351–355.
  135. Prior JO, Montemurro M, Orcurto MV, et al. Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol. 2009; 27(3): 439–445.
  136. Rodriguez Rivera AM, Alabbas H, Ramjaun A, et al. Value of positron emission tomography scan in stage III cutaneous melanoma: a systematic review and meta-analysis. Surg Oncol. 2014; 23(1): 11–16.
  137. Rutkowski P, Wysocki P, Kozak K, et al. Expert recommendations on diagnostic-therapeutic management of melanoma patients. Oncol Clin Pract. 2022; 18(6): 357–392.
  138. Schröer-Günther MA, Wolff RF, Westwood ME, et al. F-18-fluoro-2-deoxyglucose positron emission tomography (PET) and PET/computed tomography imaging in primary staging of patients with malignant melanoma: a systematic review. Syst Rev. 2012; 1: 62.
  139. Schuetze SM. Utility of positron emission tomography in sarcomas. Curr Opin Oncol. 2006; 18(4): 369–373.
  140. Schüle SC, Eigentler TK, Garbe C, et al. Influence of (18)F-FDG PET/CT on therapy management in patients with stage III/IV malignant melanoma. Eur J Nucl Med Mol Imaging. 2016; 43(3): 482–488.
  141. Schwarzbach MHM, Hinz U, Dimitrakopoulou-Strauss A, et al. Prognostic significance of preoperative [18-F] fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging in patients with resectable soft tissue sarcomas. Ann Surg. 2005; 241(2): 286–294.
  142. Singh B, Ezziddin S, Palmedo H, et al. Preoperative 18F-FDG-PET/CT imaging and sentinel node biopsy in the detection of regional lymph node metastases in malignant melanoma. Melanoma Res. 2008; 18(5): 346–352.
  143. Singh N, Alexander NA, Lachance K, et al. Clinical benefit of baseline imaging in Merkel cell carcinoma: Analysis of 584 patients. J Am Acad Dermatol. 2021; 84(2): 330–339.
  144. Siva S, Byrne K, Seel M, et al. 18F-FDG PET provides high-impact and powerful prognostic stratification in the staging of Merkel cell carcinoma: a 15-year institutional experience. J Nucl Med. 2013; 54(8): 1223–1229.
  145. Stroobants S, Goeminne J, Seegers M, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer. 2003; 39(14): 2012–2020.
  146. Toner GC, Hicks RJ. PET for sarcomas other than gastrointestinal stromal tumors. Oncologist. 2008; 13 Suppl 2: 22–26.
  147. Treglia G, Kakhki VR, Giovanella L, et al. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in patients with Merkel cell carcinoma: a systematic review and meta-analysis. Am J Clin Dermatol. 2013; 14(6): 437–447.
  148. Veit-Haibach P, Vogt FM, Jablonka R, et al. Diagnostic accuracy of contrast-enhanced FDG-PET/CT in primary staging of cutaneous malignant melanoma. Eur J Nucl Med Mol Imaging. 2009; 36(6): 910–918.
  149. Wagner T, Meyer N, Zerdoud S, et al. Fluorodeoxyglucose positron emission tomography fails to detect distant metastases at initial staging of melanoma patients with metastatic involvement of sentinel lymph node. Br J Dermatol. 2011; 164(6): 1235–1240.
  150. Xing Y, Bronstein Y, Ross MI, et al. Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: a meta-analysis. J Natl Cancer Inst. 2011; 103(2): 129–142.
  151. Alzahrani M, El-Galaly TC, Hutchings M, et al. The value of routine bone marrow biopsy in patients with diffuse large B-cell lymphoma staged with PET/CT: a Danish-Canadian study. Ann Oncol. 2016; 27(6): 1095–1099.
  152. Barrington SF, Kirkwood AA, Franceschetto A, et al. PET-CT for staging and early response: results from the Response-Adapted Therapy in Advanced Hodgkin Lymphoma study. Blood. 2016; 127(12): 1531–1538.
  153. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014; 32(27): 3048–3058.
  154. Barrington SF, Trotman J. The role of PET in the first-line treatment of the most common subtypes of non-Hodgkin lymphoma. Lancet Haematol. 2021; 8(1): e80–e93.
  155. Burggraaff CN, de Jong A, Hoekstra OS, et al. Predictive value of interim positron emission tomography in diffuse large B-cell lymphoma: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2019; 46(1): 65–79.
  156. Cheson BD, Fisher RI, Barrington SF, et al. Alliance, Australasian Leukaemia and Lymphoma Group, Eastern Cooperative Oncology Group, European Mantle Cell Lymphoma Consortium, Italian Lymphoma Foundation, European Organisation for Research, Treatment of Cancer/Dutch Hemato-Oncology Group, Grupo Español de Médula Ósea, German High-Grade Lymphoma Study Group, German Hodgkin's Study Group, Japanese Lymphorra Study Group, Lymphoma Study Association, NCIC Clinical Trials Group, Nordic Lymphoma Study Group, Southwest Oncology Group, United Kingdom National Cancer Research Institute. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014; 32(27): 3059–3068.
  157. Dührsen U, Müller S, Hertenstein B, et al. PETAL Trial Investigators. Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas (PETAL): A Multicenter, Randomized Phase III Trial. J Clin Oncol. 2018; 36(20): 2024–2034.
  158. Eichenauer DA, Engert A, André M, et al. ESMO Guidelines Working Group. Hodgkin's lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014; 25 Suppl 3: iii70–iii75.
  159. El-Galaly TC, Pedersen MB, Hutchings M, et al. Utility of interim and end-of-treatment PET/CT in peripheral T-cell lymphomas: A review of 124 patients. Am J Hematol. 2015; 90(11): 975–980.
  160. Freeman CL, Savage KJ, Villa DR, et al. Long-term results of PET-guided radiation in patients with advanced-stage diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2021; 137(7): 929–938.
  161. Frood R, Burton C, Tsoumpas C, et al. Baseline PET/CT imaging parameters for prediction of treatment outcome in Hodgkin and diffuse large B cell lymphoma: a systematic review. Eur J Nucl Med Mol Imaging. 2021; 48(10): 3198–3220.
  162. Girinsky T, Aupérin A, Ribrag V, et al. Role of FDG-PET in the implementation of involved-node radiation therapy for Hodgkin lymphoma patients. Int J Radiat Oncol Biol Phys. 2014; 89(5): 1047–1052.
  163. Guo B, Tan X, Ke Q, et al. Prognostic value of baseline metabolic tumor volume and total lesion glycolysis in patients with lymphoma: A meta-analysis. PLoS One. 2019; 14(1): e0210224.
  164. Khan AB, Barrington SF, Mikhaeel NG, et al. PET-CT staging of DLBCL accurately identifies and provides new insight into the clinical significance of bone marrow involvement. Blood. 2013; 122(1): 61–67.
  165. Pedersen MA, Gormsen LC, Kamper P, et al. Focal skeletal FDG uptake indicates poor prognosis in cHL regardless of extent and first-line chemotherapy. Br J Haematol. 2019; 186(3): 431–439.
  166. Persky DO, Li H, Stephens DM, et al. Positron Emission Tomography-Directed Therapy for Patients With Limited-Stage Diffuse Large B-Cell Lymphoma: Results of Intergroup National Clinical Trials Network Study S1001. J Clin Oncol. 2020; 38(26): 3003–3011.
  167. Schöder H, Polley MYC, Knopp MV, et al. Prognostic value of interim FDG-PET in diffuse large cell lymphoma: results from the CALGB 50303 Clinical Trial. Blood. 2020; 135(25): 2224–2234.
  168. Tilly H, Gomes da Silva M, Vitolo U, et al. ESMO Guidelines Committee. Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015; 26 Suppl 5: v116–v125.
  169. Voltin CA, Goergen H, Baues C, et al. Value of bone marrow biopsy in Hodgkin lymphoma patients staged by FDG PET: results from the German Hodgkin Study Group trials HD16, HD17, and HD18. Ann Oncol. 2018; 29(9): 1926–1931.
  170. Voltin CA, Mettler J, Grosse J, et al. FDG-PET Imaging for Hodgkin and Diffuse Large B-Cell Lymphoma-An Updated Overview. Cancers (Basel). 2020; 12(3).



Onkologia w Praktyce Klinicznej - Edukacja