Ahead of print
Artykuł przeglądowy
Opublikowany online: 2023-07-06
Pobierz cytowanie

Diagnostyka i leczenie chorych na mięsaka maziówkowego

Magdalena Zielińska12, Katarzyna Kozak1, Tomasz Świtaj1, Aneta Borkowska1, Bartłomiej Szostakowski13, Anna Szumera-Ciećkiewicz45, Elżbieta Bylina16, Paweł Sobczuk17, Sławomir Falkowski1, Piotr Rutkowski1, Anna M. Czarnecka18
Afiliacje
  1. Klinika Nowotworów Tkanek Miękkich, Kości i Czerniaków, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie — Państwowy Instytut Badawczy w Warszawie
  2. Wydział Lekarski, Warszawski Uniwersytet Medyczny
  3. Samodzielny Publiczny Szpital Kliniczny im. prof. Adama Grucy CMKP w Otwocku
  4. Zakład Patomorfologii Nowotworów, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie — Państwowy Instytut Badawczy w Warszawie
  5. Zakład Diagnostyki Hematologicznej, Instytut Hematologii i Transfuzjologii w Warszawie
  6. Dział Badań Klinicznych, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie — Państwowy Instytut Badawczy w Warszawie
  7. Zakład Fizjologii Doświadczalnej i Klinicznej, Laboratorium Centrum Badań Przedklinicznych, Warszawski Uniwersytet Medyczny
  8. Zakład Farmakologii Doświadczalnej, Instytut Medycyny Doświadczalnej i Klinicznej im. M. Mossakowskiego PAN w Warszawie

dostęp płatny

Ahead of print
PRACE PRZEGLĄDOWE (REVIEW ARTICLES)
Opublikowany online: 2023-07-06

Streszczenie

Mięsak maziówkowy (SaSy, sarcoma synoviale) jest nowotworem złośliwym, wywodzącym się z prymitywnych komórek mezenchymalnych. Nowotwory te stanowią około 5–10% wszystkich mięsaków tkanek miękkich (MTM). Zajmują jednak 3. miejsce wśród MTM, jeśli chodzi o częstość występowania w lokalizacji kończynowej. Występują najczęściej u młodych dorosłych w 3. i 4. dekadzie życia, jako powoli rosnąca zmiana, która staje się agresywna od pewnego etapu choroby. Nowotwór ten charakteryzuje się specyficzną translokacją między genem na chromosomie 18 (SS18) a genem na chromosomie X (SSX1, SSX2 lub SSX4). Leczenie chorych na SaSy powinno być prowadzone w ośrodku referencyjnym. Podstawą leczenia mięsaka maziówkowego pozostaje chirurgiczne wycięcie z ujemnymi marginesami z dodatkiem radioterapii i/lub chemioterapii w zależności od charakterystyki pacjenta i guza. Chemioterapię pierwszego rzutu stanowi obecnie leczenie skojarzone doksorubicyną z ifosfamidem, które jest stosowane także jako terapia podstawowa choroby uogólnionej. Alternatywną opcję dla pacjentów z chorobą uogólnioną, którzy nie mogą być leczeni doksorubicyną, stanowi monoterapia ifosfamidem w wysokich dawkach. Nowe pojawiające się metody leczenia chorych na SaSy obejmują regorafenib i terapie celowane przeciwko NYESO- 1 i MAGE-4 z użyciem genetycznie modyfikowanych limfocytów T. Nowe terapie ukierunkowane na geny oraz leczenie immunomodulujące mogą w przyszłości poprawić wyniki leczenia chorych na mięsaka maziówkowego w stadium zaawansowanym i obecnością przerzutów odległych. Obecnie jednak pazopanib jest jedynym lekiem celowanym dopuszczonym do leczenia SaSy. Według ClinicalTrials.gov po 2016 roku rozpoczęło się ponad 30 badań klinicznych nad leczeniem chorych z przerzutową i zaawansowaną postacią SaSy.

Streszczenie

Mięsak maziówkowy (SaSy, sarcoma synoviale) jest nowotworem złośliwym, wywodzącym się z prymitywnych komórek mezenchymalnych. Nowotwory te stanowią około 5–10% wszystkich mięsaków tkanek miękkich (MTM). Zajmują jednak 3. miejsce wśród MTM, jeśli chodzi o częstość występowania w lokalizacji kończynowej. Występują najczęściej u młodych dorosłych w 3. i 4. dekadzie życia, jako powoli rosnąca zmiana, która staje się agresywna od pewnego etapu choroby. Nowotwór ten charakteryzuje się specyficzną translokacją między genem na chromosomie 18 (SS18) a genem na chromosomie X (SSX1, SSX2 lub SSX4). Leczenie chorych na SaSy powinno być prowadzone w ośrodku referencyjnym. Podstawą leczenia mięsaka maziówkowego pozostaje chirurgiczne wycięcie z ujemnymi marginesami z dodatkiem radioterapii i/lub chemioterapii w zależności od charakterystyki pacjenta i guza. Chemioterapię pierwszego rzutu stanowi obecnie leczenie skojarzone doksorubicyną z ifosfamidem, które jest stosowane także jako terapia podstawowa choroby uogólnionej. Alternatywną opcję dla pacjentów z chorobą uogólnioną, którzy nie mogą być leczeni doksorubicyną, stanowi monoterapia ifosfamidem w wysokich dawkach. Nowe pojawiające się metody leczenia chorych na SaSy obejmują regorafenib i terapie celowane przeciwko NYESO- 1 i MAGE-4 z użyciem genetycznie modyfikowanych limfocytów T. Nowe terapie ukierunkowane na geny oraz leczenie immunomodulujące mogą w przyszłości poprawić wyniki leczenia chorych na mięsaka maziówkowego w stadium zaawansowanym i obecnością przerzutów odległych. Obecnie jednak pazopanib jest jedynym lekiem celowanym dopuszczonym do leczenia SaSy. Według ClinicalTrials.gov po 2016 roku rozpoczęło się ponad 30 badań klinicznych nad leczeniem chorych z przerzutową i zaawansowaną postacią SaSy.

Pobierz cytowanie

Słowa kluczowe

mięsak maziówkowy; sarcoma synoviale; MTM; SS18; mięsak

Informacje o artykule
Tytuł

Diagnostyka i leczenie chorych na mięsaka maziówkowego

Czasopismo

Onkologia w Praktyce Klinicznej - Edukacja

Numer

Ahead of print

Typ artykułu

Artykuł przeglądowy

Opublikowany online

2023-07-06

Wyświetlenia strony

416

Wyświetlenia/pobrania artykułu

44

Słowa kluczowe

mięsak maziówkowy
sarcoma synoviale
MTM
SS18
mięsak

Autorzy

Magdalena Zielińska
Katarzyna Kozak
Tomasz Świtaj
Aneta Borkowska
Bartłomiej Szostakowski
Anna Szumera-Ciećkiewicz
Elżbieta Bylina
Paweł Sobczuk
Sławomir Falkowski
Piotr Rutkowski
Anna M. Czarnecka

Referencje (214)
  1. Toro JR, Travis LB, Wu HJ, et al. Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978-2001: An analysis of 26,758 cases. Int J Cancer. 2006; 119(12): 2922–2930.
  2. Board WCoTE. WHO Classification of Tumours: Soft Tissue and Bone Tumours: International Agency for Research on Cancer. 2020.
  3. Mastrangelo G, Coindre JM, Ducimetière F, et al. Incidence of soft tissue sarcoma and beyond: a population-based prospective study in 3 European regions. Cancer. 2012; 118(21): 5339–5348.
  4. Eilber FC, Dry SM. Diagnosis and management of synovial sarcoma. J Surg Oncol. 2008; 97(4): 314–320.
  5. Palmerini E, Staals EL, Alberghini M, et al. Synovial sarcoma: retrospective analysis of 250 patients treated at a single institution. Cancer. 2009; 115(13): 2988–2998.
  6. Gazendam AM, Popovic S, Munir S, et al. Synovial Sarcoma: A Clinical Review. Curr Oncol. 2021; 28(3): 1909–1920.
  7. Hoang NT, Acevedo LA, Mann MJ, et al. A review of soft-tissue sarcomas: translation of biological advances into treatment measures. Cancer Manag Res. 2018; 10: 1089–1114.
  8. Lewis JJ, Antonescu CR, Leung DH, et al. Synovial sarcoma: a multivariate analysis of prognostic factors in 112 patients with primary localized tumors of the extremity. J Clin Oncol. 2000; 18(10): 2087–2094.
  9. Trassard M, Le Doussal V, Hacène K, et al. Prognostic factors in localized primary synovial sarcoma: a multicenter study of 128 adult patients. J Clin Oncol. 2001; 19(2): 525–534.
  10. Spillane AJ, A'Hern R, Judson IR, et al. Synovial sarcoma: a clinicopathologic, staging, and prognostic assessment. J Clin Oncol. 2000; 18(22): 3794–3803.
  11. Goldblum JR, Weiss SW. Enzinger and Weiss's Soft Tissue Tumors. Enzinger and Weiss's Soft Tissue Tumors. Elsevier Saunders, Philadelphia 2014: 1052–1070.
  12. Baldi GG, Orbach D, Bertulli R, et al. Standard treatment and emerging drugs for managing synovial sarcoma: adult's and pediatric oncologist perspective. Expert Opin Emerg Drugs. 2019; 24(1): 43–53.
  13. Joseph B, St. Laurent S, Zheng S, et al. 1728P - Epidemiology of synovial sarcoma in EU28 countries. Ann Oncol. 2019; 30(Suppl 5): v706–v707.
  14. McGrory JE, Pritchard DJ, Arndt CA, et al. Nonrhabdomyosarcoma soft tissue sarcomas in children. The Mayo Clinic experience. Clin Orthop Relat Res. 2000(374): 247–258.
  15. Sultan I, Rodriguez-Galindo C, Saab R, et al. Comparing children and adults with synovial sarcoma in the Surveillance, Epidemiology, and End Results program, 1983 to 2005: an analysis of 1268 patients. Cancer. 2009; 115(15): 3537–3547.
  16. Brennan B, Stiller C, Grimer R, et al. Outcome and the effect of age and socioeconomic status in 1318 patients with synovial sarcoma in the English National Cancer Registry: 1985-2009. Clin Sarcoma Res. 2016; 6: 18.
  17. Wang S, Song R, Sun T, et al. Survival changes in Patients with Synovial Sarcoma, 1983-2012. J Cancer. 2017; 8(10): 1759–1768.
  18. Aytekin MN, Öztürk R, Amer K, et al. Epidemiology, incidence, and survival of synovial sarcoma subtypes: SEER database analysis. J Orthop Surg (Hong Kong). 2020; 28(2): 2309499020936009.
  19. Ferrari A, Gronchi A, Casanova M, et al. Synovial sarcoma: a retrospective analysis of 271 patients of all ages treated at a single institution. Cancer. 2004; 101(3): 627–634.
  20. Wang Y, Zhu F, Wang K. Synovial sarcoma of the floor of the mouth: a rare case report. BMC Oral Health. 2020; 20(1): 5.
  21. Herrera-Goepfert R. Postradiation Synovial Sarcoma of the Common Bile Duct: A Previously Unreported Anatomic Site. Int J Surg Pathol. 2018; 26(5): 469–474.
  22. Faur C, Pop D, Awwad AA, et al. Synovial Sarcoma of the Extremities: A Literature Review. Applied Sciences. 2021; 11(16): 7407.
  23. Rutkowski P, Zdzienicki M. Diagnostyka mięsaków tkanek miękkich. In: Rutkowski P. ed. Biblioteka Chirurga Onkologa. Mięsaki tkanek miękkich. Via Medica, Gdańsk 2015.
  24. Ptaszyński KPJ, Rutkowski P. Maziówczak złośliwy. In: Rutkowski P. ed. Biblioteka Chirurga Onkologa. Mięsaki tkanek miękkich. Via Medica, Gdańsk 2015.
  25. Krieg AH, Hefti F, Speth BM, et al. Synovial sarcomas usually metastasize after >5 years: a multicenter retrospective analysis with minimum follow-up of 10 years for survivors. Ann Oncol. 2011; 22(2): 458–467.
  26. Wilson DAJ, Gazendam A, Visgauss J, et al. Designing a Rational Follow-Up Schedule for Patients with Extremity Soft Tissue Sarcoma. Ann Surg Oncol. 2020; 27(6): 2033–2041.
  27. El Beaino M, Araujo DM, Gopalakrishnan V, et al. Prognosis of T1 synovial sarcoma depends upon surgery by oncologic surgeons. J Surg Oncol. 2016; 114(4): 490–494.
  28. Scheer M, Blank B, Bauer S, et al. Cooperative Weichteilsarkom Studiengruppe [CWS]. Synovial sarcoma disease characteristics and primary tumor sites differ between patient age groups: a report of the Cooperative Weichteilsarkom Studiengruppe (CWS). J Cancer Res Clin Oncol. 2020; 146(4): 953–960.
  29. Brennan M, Antonescu C, Maki R. Management of Soft Tissue Sarcoma. 2013.
  30. Spurrell EL, Fisher C, Thomas JM, et al. Prognostic factors in advanced synovial sarcoma: an analysis of 104 patients treated at the Royal Marsden Hospital. Ann Oncol. 2005; 16(3): 437–444.
  31. Vlenterie M, Litière S, Rizzo E, et al. Outcome of chemotherapy in advanced synovial sarcoma patients: Review of 15 clinical trials from the European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group; setting a new landmark for studies in this entity. Eur J Cancer. 2016; 58: 62–72.
  32. Amankwah EK, Conley AP, Reed DR. Epidemiology and therapies for metastatic sarcoma. Clin Epidemiol. 2013; 5: 147–162.
  33. Scheer M, Dantonello T, Hallmen E, et al. Primary Metastatic Synovial Sarcoma: Experience of the CWS Study Group. Pediatr Blood Cancer. 2016; 63(7): 1198–1206.
  34. Skinner K, Eilber F. Soft Tissue Sarcoma Nodal Metastases: Biologic Significance and Therapeutic Considerations. Surg Oncol Clin N Am. 1996; 5(1): 121–127.
  35. Keung EZ, Chiang YJ, Voss RK, et al. Defining the incidence and clinical significance of lymph node metastasis in soft tissue sarcoma. Eur J Surg Oncol. 2018; 44(1): 170–177.
  36. Jacobs AJ, Morris CD, Levin AS. Synovial Sarcoma Is Not Associated With a Higher Risk of Lymph Node Metastasis Compared With Other Soft Tissue Sarcomas. Clin Orthop Relat Res. 2018; 476(3): 589–598.
  37. Smolle MA, Parry M, Jeys L, et al. Synovial sarcoma: Do children do better? Eur J Surg Oncol. 2019; 45(2): 254–260.
  38. Ferguson PC, Griffin AM, O'Sullivan B, et al. Bone invasion in extremity soft-tissue sarcoma: impact on disease outcomes. Cancer. 2006; 106(12): 2692–2700.
  39. O'Sullivan PJ, Harris AC, Munk PL. Radiological features of synovial cell sarcoma. Br J Radiol. 2008; 81(964): 346–356.
  40. Marzano L, Failoni S, Gallazzi M, et al. The role of diagnostic imaging in synovial sarcoma. Our experience. Radiol Med. 2004; 107(5-6): 533–540.
  41. Tateishi U, Hasegawa T, Beppu Y, et al. Synovial sarcoma of the soft tissues: prognostic significance of imaging features. J Comput Assist Tomogr. 2004; 28(1): 140–148.
  42. Jones BC, Sundaram M, Kransdorf MJ. Synovial sarcoma: MR imaging findings in 34 patients. AJR Am J Roentgenol. 1993; 161(4): 827–830.
  43. Baheti AD, Tirumani SH, Sewatkar R, et al. Imaging features of primary and metastatic extremity synovial sarcoma: a single institute experience of 78 patients. Br J Radiol. 2015; 88(1046): 20140608.
  44. Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging. 2004; 31(2): 189–195.
  45. Brenner W, Eary JF, Hwang W, et al. Risk assessment in liposarcoma patients based on FDG PET imaging. Eur J Nucl Med Mol Imaging. 2006; 33(11): 1290–1295.
  46. Hawkins DS, Schuetze SM, Butrynski JE, et al. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005; 23(34): 8828–8834.
  47. Van Der Gucht A, Zehou O, Djelbani-Ahmed S, et al. Metabolic Tumour Burden Measured by 18F-FDG PET/CT Predicts Malignant Transformation in Patients with Neurofibromatosis Type-1. PLoS One. 2016; 11(3): e0151809.
  48. Cardona S, Schwarzbach M, Hinz U, et al. Evaluation of F18-deoxyglucose positron emission tomography (FDG-PET) to assess the nature of neurogenic tumours. Eur J Surg Oncol. 2003; 29(6): 536–541.
  49. Lisle JW, Eary JF, O'Sullivan J, et al. Risk assessment based on FDG-PET imaging in patients with synovial sarcoma. Clin Orthop Relat Res. 2009; 467(6): 1605–1611.
  50. Rayamajhi S, Reddy A, Agrawal K, et al. Utility of F-18 FDG PET/CT in synovial cell sarcoma. Soc Nuclear Med. 2015.
  51. Kasraeian S, Allison DC, Ahlmann ER, et al. A comparison of fine-needle aspiration, core biopsy, and surgical biopsy in the diagnosis of extremity soft tissue masses. Clin Orthop Relat Res. 2010; 468(11): 2992–3002.
  52. Narvani AA, Tsiridis E, Saifuddin A, et al. Does image guidance improve accuracy of core needle biopsy in diagnosis of soft tissue tumours? Acta Orthop Belg. 2009; 75(2): 239–244.
  53. Mankin HJ, Mankin CJ, Simon MA. The hazards of the biopsy, revisited. Members of the Musculoskeletal Tumor Society. J Bone Joint Surg Am. 1996; 78(5): 656–663.
  54. Jo VY, Fletcher CDM. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology. 2014; 46(2): 95–104.
  55. Hiraga H, Nojima T, Abe S, et al. Diagnosis of synovial sarcoma with the reverse transcriptase-polymerase chain reaction: analyses of 84 soft tissue and bone tumors. Diagn Mol Pathol. 1998; 7(2): 102–110.
  56. Fletcher C, Bridge JA, Hogendoorn PCW, Mertens FW. WHO Classification of Tumours of Soft Tissue and Bone: WHO Classification of Tumours, vol. 5. World Health Organization 2013.
  57. Lai JP, Robbins PF, Raffeld M, et al. NY-ESO-1 expression in synovial sarcoma and other mesenchymal tumors: significance for NY-ESO-1-based targeted therapy and differential diagnosis. Mod Pathol. 2012; 25(6): 854–858.
  58. Surace C, Panagopoulos I, Pålsson E, et al. A novel FISH assay for SS18-SSX fusion type in synovial sarcoma. Lab Invest. 2004; 84(9): 1185–1192.
  59. Limon J, Dal Cin P, Sandberg AA. Translocations involving the X chromosome in solid tumors: presentation of two sarcomas with t(X;18)(q13;p11). Cancer Genet Cytogenet. 1986; 23(1): 87–91.
  60. Panagopoulos I, Mertens F, Isaksson M, et al. Clinical impact of molecular and cytogenetic findings in synovial sarcoma. Genes Chromosomes Cancer. 2001; 31(4): 362–372.
  61. Stegmaier S, Leuschner I, Poremba C, et al. The prognostic impact of SYT-SSX fusion type and histological grade in pediatric patients with synovial sarcoma treated according to the CWS (Cooperative Weichteilsarkom Studie) trials. Pediatr Blood Cancer. 2017; 64(1): 89–95.
  62. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Synovial sarcoma. Cancer Genet Cytogenet. 2002; 133(1): 1–23.
  63. Ladanyi M, Antonescu CR, Leung DH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002; 62(1): 135–140.
  64. Skytting B, Nilsson G, Brodin B, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst. 1999; 91(11): 974–975.
  65. Santos Nd, Bruijn Dde, Kessel Av. Molecular mechanisms underlying human synovial sarcoma development. Genes, Chromosomes and Cancer. 2000; 30(1): 1–14, doi: 10.1002/1098-2264(2000)9999:9999<::aid-gcc1056>3.0.co;2-g.
  66. Przybyl J, Jurkowska M, Rutkowski P, et al. Downstream and intermediate interactions of synovial sarcoma-associated fusion oncoproteins and their implication for targeted therapy. Sarcoma. 2012; 2012: 249219.
  67. El Beaino M, Araujo DM, Lazar AJ, et al. Synovial Sarcoma: Advances in Diagnosis and Treatment Identification of New Biologic Targets to Improve Multimodal Therapy. Ann Surg Oncol. 2017; 24(8): 2145–2154.
  68. Kawai A, Woodruff J, Healey JH, et al. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med. 1998; 338(3): 153–160.
  69. Inagaki H, Nagasaka T, Otsuka T, et al. Association of SYT-SSX fusion types with proliferative activity and prognosis in synovial sarcoma. Mod Pathol. 2000; 13(5): 482–488.
  70. Stacchiotti S, Van Tine BA. Synovial Sarcoma: Current Concepts and Future Perspectives. J Clin Oncol. 2018; 36(2): 180–187.
  71. Nakagawa Y, Numoto K, Yoshida A, et al. Chromosomal and genetic imbalances in synovial sarcoma detected by conventional and microarray comparative genomic hybridization. J Cancer Res Clin Oncol. 2006; 132(7): 444–450.
  72. Enneking WF. A system of staging musculoskeletal neoplasms. Instr Course Lect. 1988; 37: 3–10.
  73. Edge SB, Compton C. Soft Tissue Sarcoma. AJCC Cancer Staging Handbook. Springer, New York 2010.
  74. Amin MB, Greene F. AJCC Cancer Staging Manual. 8th ed. Springer International Publishing, Cham 2017.
  75. Edge SB, Byrd DR, Carducci MA, et al. AJCC cancer staging manual. Springer, New York 2010.
  76. Costa J, Wesley RA, Glatstein E, et al. The grading of soft tissue sarcomas results of a clinicohistopathologic correlation in a series of 163 cases. Cancer. 1984; 53(3): 530–541, doi: 10.1002/1097-0142(19840201)53:3<530::aid-cncr2820530327>3.0.co;2-d.
  77. Neuville A, Chibon F, Coindre JM. Grading of soft tissue sarcomas: from histological to molecular assessment. Pathology. 2014; 46(2): 113–120.
  78. Rutkowski P, Szacht M. In: Rutkowski P, Szacht M. ed. Biblioteka Chirurga Onkologa. Mięsaki tkanek miękkich. Via Medica, Gdańsk 2015.
  79. Naing KW, Monjazeb AM, Li CS, et al. Perioperative radiotherapy is associated with improved survival among patients with synovial sarcoma: A SEER analysis. J Surg Oncol. 2015; 111(2): 158–164.
  80. Italiano A, Penel N, Robin YM, et al. Neo/adjuvant chemotherapy does not improve outcome in resected primary synovial sarcoma: a study of the French Sarcoma Group. Ann Oncol. 2009; 20(3): 425–430.
  81. Outani H, Nakamura T, Murata H, et al. Localized synovial sarcoma: A single institutional study of 191 patients with a minimum follow-up of 5 years for survivors. J Surg Oncol. 2019; 119(7): 850–855.
  82. Chen Y, Yang Y, Wang C, et al. Adjuvant chemotherapy decreases and postpones distant metastasis in extremity stage IIB/III synovial sarcoma patients. J Surg Oncol. 2012; 106(2): 162–168.
  83. Canter RJ, Qin LX, Maki RG, et al. A synovial sarcoma-specific preoperative nomogram supports a survival benefit to ifosfamide-based chemotherapy and improves risk stratification for patients. Clin Cancer Res. 2008; 14(24): 8191–8197.
  84. Ferrari A, De Salvo GL, Oberlin O, et al. Synovial sarcoma in children and adolescents: a critical reappraisal of staging investigations in relation to the rate of metastatic involvement at diagnosis. Eur J Cancer. 2012; 48(9): 1370–1375.
  85. Ferrari A, De Salvo GL, Brennan B, et al. Synovial sarcoma in children and adolescents: the European Pediatric Soft Tissue Sarcoma Study Group prospective trial (EpSSG NRSTS 2005). Ann Oncol. 2015; 26(3): 567–572.
  86. Okcu MF, Munsell M, Treuner J, et al. Synovial sarcoma of childhood and adolescence: a multicenter, multivariate analysis of outcome. J Clin Oncol. 2003; 21(8): 1602–1611.
  87. Ferrari A, Chiaravalli S, Casanova M, et al. Considering chemotherapy in synovial sarcoma. Expert Opinion on Orphan Drugs. 2015; 3(10): 1111–1124.
  88. Ferrari A, Bisogno G, Alaggio R, et al. Synovial sarcoma of children and adolescents: the prognostic role of axial sites. Eur J Cancer. 2008; 44(9): 1202–1209.
  89. Corey RM, Swett K, Ward WG. Epidemiology and survivorship of soft tissue sarcomas in adults: a national cancer database report. Cancer Med. 2014; 3(5): 1404–1415.
  90. Blay JY, van Glabbeke M, Verweij J, et al. Advanced soft-tissue sarcoma: a disease that is potentially curable for a subset of patients treated with chemotherapy. Eur J Cancer. 2003; 39(1): 64–69.
  91. Van Glabbeke M, van Oosterom AT, Oosterhuis JW, et al. Prognostic factors for the outcome of chemotherapy in advanced soft tissue sarcoma: an analysis of 2,185 patients treated with anthracycline-containing first-line regimens--a European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Study. J Clin Oncol. 1999; 17(1): 150–157.
  92. Judson I, Verweij J, Gelderblom H, et al. European Organisation and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014; 15(4): 415–423.
  93. Kozak K, Teterycz P, Świtaj T, et al. The Long-Term Outcomes of Intensive Combined Therapy of Adult Patients with Localised Synovial Sarcoma. J Clin Med. 2020; 9(10).
  94. Chibon F, Lagarde P, Salas S, et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med. 2010; 16(7): 781–787.
  95. Bakhoum SF, Cantley LC. The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment. Cell. 2018; 174(6): 1347–1360.
  96. Casali PG, Abecassis N, Aro HT, et al. ESMO Guidelines Committee and EURACAN. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018; 29(Suppl 4): iv51–iv67.
  97. von Mehren M, Kane JM, Bui MM, et al. NCCN Guidelines Insights: Soft Tissue Sarcoma, Version 1.2021. J Natl Compr Canc Netw. 2020; 18(12): 1604–1612.
  98. Bhangu AA, Beard JAS, Grimer RJ. Should Soft Tissue Sarcomas be Treated at a Specialist Centre? Sarcoma. 2004; 8(1): 1–6.
  99. Rossi CR, Vecchiato A, Mastrangelo G, et al. Adherence to treatment guidelines for primary sarcomas affects patient survival: a side study of the European CONnective TIssue CAncer NETwork (CONTICANET). Ann Oncol. 2013; 24(6): 1685–1691.
  100. von Mehren M, Randall RL, Benjamin RS, et al. Soft Tissue Sarcoma, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2016; 14(6): 758–786.
  101. Vining CC, Sinnamon AJ, Ecker BL, et al. Adjuvant chemotherapy in resectable synovial sarcoma. J Surg Oncol. 2017; 116(4): 550–558.
  102. Gingrich AA, Marrufo AS, Liu Yu, et al. Radiotherapy is Associated With Improved Survival in Patients With Synovial Sarcoma Undergoing Surgery: A National Cancer Database Analysis. J Surg Res. 2020; 255: 378–387.
  103. Yang JC, Chang AE, Baker AR, et al. Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J Clin Oncol. 1998; 16(1): 197–203.
  104. Pisters PW, Harrison LB, Leung DH, et al. Long-term results of a prospective randomized trial of adjuvant brachytherapy in soft tissue sarcoma. J Clin Oncol. 1996; 14(3): 859–868.
  105. Seo SW, Kim J, Son J, et al. Evaluation of conditional treatment effects of adjuvant treatments on patients with synovial sarcoma using Bayesian subgroup analysis. BMC Med Inform Decis Mak. 2020; 20(1): 320.
  106. Lewis JJ, Leung D, Woodruff JM, et al. Retroperitoneal soft-tissue sarcoma: analysis of 500 patients treated and followed at a single institution. Ann Surg. 1998; 228(3): 355–365.
  107. Gronchi A, Lo Vullo S, Fiore M, et al. Aggressive surgical policies in a retrospectively reviewed single-institution case series of retroperitoneal soft tissue sarcoma patients. J Clin Oncol. 2009; 27(1): 24–30.
  108. Ferrari A, Chi YY, De Salvo GL, et al. Surgery alone is sufficient therapy for children and adolescents with low-risk synovial sarcoma: A joint analysis from the European paediatric soft tissue sarcoma Study Group and the Children's Oncology Group. Eur J Cancer. 2017; 78: 1–6.
  109. Kawaguchi N, Ahmed AR, Matsumoto S, et al. The concept of curative margin in surgery for bone and soft tissue sarcoma. Clin Orthop Relat Res. 2004(419): 165–172.
  110. Guadagnolo BA, Zagars GK, Ballo MT, et al. Long-term outcomes for synovial sarcoma treated with conservation surgery and radiotherapy. Int J Radiat Oncol Biol Phys. 2007; 69(4): 1173–1180.
  111. O'Donnell PW, Griffin AM, Eward WC, et al. The effect of the setting of a positive surgical margin in soft tissue sarcoma. Cancer. 2014; 120(18): 2866–2875.
  112. Sambri A, Caldari E, Fiore M, et al. Margin Assessment in Soft Tissue Sarcomas: Review of the Literature. Cancers (Basel). 2021; 13(7).
  113. Chandrasekar CR, Wafa H, Grimer RJ, et al. The effect of an unplanned excision of a soft-tissue sarcoma on prognosis. J Bone Joint Surg Br. 2008; 90(2): 203–208.
  114. Chotel F, Unnithan A, Chandrasekar CR, et al. Variability in the presentation of synovial sarcoma in children: a plea for greater awareness. J Bone Joint Surg Br. 2008; 90(8): 1090–1096.
  115. Potter BK, Adams SC, Pitcher JD, et al. Local recurrence of disease after unplanned excisions of high-grade soft tissue sarcomas. Clin Orthop Relat Res. 2008; 466(12): 3093–3100.
  116. Pretell-Mazzini J, Barton MD, Conway SA, et al. Unplanned excision of soft-tissue sarcomas: current concepts for management and prognosis. J Bone Joint Surg Am. 2015; 97(7): 597–603.
  117. Ghert MA, Abudu A, Driver N, et al. The indications for and the prognostic significance of amputation as the primary surgical procedure for localized soft tissue sarcoma of the extremity. Ann Surg Oncol. 2005; 12(1): 10–17.
  118. Sampath S, Schultheiss TE, Hitchcock YJ, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma: multi-institutional analysis of 821 patients. Int J Radiat Oncol Biol Phys. 2011; 81(2): 498–505.
  119. Song S, Park J, Kim HJ, et al. Effects of Adjuvant Radiotherapy in Patients With Synovial Sarcoma. Am J Clin Oncol. 2017; 40(3): 306–311.
  120. Davis AM, O'Sullivan B, Turcotte R, et al. Canadian Sarcoma Group, NCI Canada Clinical Trial Group Randomized Trial. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother Oncol. 2005; 75(1): 48–53.
  121. O'Sullivan B, Davis AM, Turcotte R, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet. 2002; 359(9325): 2235–2241.
  122. Haas RLM, Delaney TF, O'Sullivan B, et al. Radiotherapy for management of extremity soft tissue sarcomas: why, when, and where? Int J Radiat Oncol Biol Phys. 2012; 84(3): 572–580.
  123. Wang J, Song Y, Liu X, et al. Comparison of outcome and toxicity of postoperative intensity-modulated radiation therapy with two-dimensional radiotherapy in patients with soft tissue sarcoma of extremities and trunk. Cancer Med. 2019; 8(3): 902–909.
  124. O'Sullivan B, Griffin AM, Dickie CI, et al. Phase 2 study of preoperative image-guided intensity-modulated radiation therapy to reduce wound and combined modality morbidities in lower extremity soft tissue sarcoma. Cancer. 2013; 119(10): 1878–1884.
  125. Eilber FC, Brennan MF, Eilber FR, et al. Chemotherapy is associated with improved survival in adult patients with primary extremity synovial sarcoma. Ann Surg. 2007; 246(1): 105–113.
  126. Sleijfer S, Ouali M, van Glabbeke M, et al. Prognostic and predictive factors for outcome to first-line ifosfamide-containing chemotherapy for adult patients with advanced soft tissue sarcomas: an exploratory, retrospective analysis on large series from the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC-STBSG). Eur J Cancer. 2010; 46(1): 72–83.
  127. Gronchi A, Casali PG. Adjuvant therapy for high-risk soft tissue sarcoma in the adult. Curr Treat Options Oncol. 2013; 14(3): 415–424.
  128. Gronchi A, Miah AB, Dei Tos AP, et al. ESMO Guidelines Committee, EURACAN and GENTURIS. Electronic address: clinicalguidelines@esmo.org. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021; 32(11): 1348–1365.
  129. Adjuvant chemotherapy for localised resectable soft-tissue sarcoma of adults: meta-analysis of individual data. Lancet. 1997; 350(9092): 1647–1654.
  130. Pervaiz N, Colterjohn N, Farrokhyar F, et al. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer. 2008; 113(3): 573–581.
  131. Tanaka K, Mizusawa J, Fukuda H, et al. Perioperative chemotherapy with ifosfamide and doxorubicin for high-grade soft tissue sarcomas in the extremities (JCOG0304). Jpn J Clin Oncol. 2015; 45(6): 555–561.
  132. Woll PJ, Reichardt P, Le Cesne A, et al. EORTC Soft Tissue and Bone Sarcoma Group and the NCIC Clinical Trials Group Sarcoma Disease Site Committee. Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected soft-tissue sarcoma (EORTC 62931): a multicentre randomised controlled trial. Lancet Oncol. 2012; 13(10): 1045–1054.
  133. Bramwell V, Rouesse J, Steward W, et al. Adjuvant CYVADIC chemotherapy for adult soft tissue sarcoma--reduced local recurrence but no improvement in survival: a study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J Clin Oncol. 1994; 12(6): 1137–1149.
  134. Le Cesne A, Ouali M, Leahy MG, et al. Doxorubicin-based adjuvant chemotherapy in soft tissue sarcoma: pooled analysis of two STBSG-EORTC phase III clinical trials. Ann Oncol. 2014; 25(12): 2425–2432.
  135. Pasquali S, Pizzamiglio S, Touati N, et al. EORTC – Soft Tissue and Bone Sarcoma Group. The impact of chemotherapy on survival of patients with extremity and trunk wall soft tissue sarcoma: revisiting the results of the EORTC-STBSG 62931 randomised trial. Eur J Cancer. 2019; 109: 51–60.
  136. Nakamura T, Saito Y, Tsuchiya K, et al. Is perioperative chemotherapy recommended in childhood and adolescent patients with synovial sarcoma? A systematic review. Jpn J Clin Oncol. 2021; 51(6): 927–931.
  137. Gronchi A, Frustaci S, Mercuri M, et al. Short, full-dose adjuvant chemotherapy in high-risk adult soft tissue sarcomas: a randomized clinical trial from the Italian Sarcoma Group and the Spanish Sarcoma Group. J Clin Oncol. 2012; 30(8): 850–856.
  138. Gronchi A, Stacchiotti S, Verderio P, et al. Short, full-dose adjuvant chemotherapy (CT) in high-risk adult soft tissue sarcomas (STS): long-term follow-up of a randomized clinical trial from the Italian Sarcoma Group and the Spanish Sarcoma Group. Ann Oncol. 2016; 27(12): 2283–2288.
  139. Gronchi A, Palmerini E, Quagliuolo V, et al. Neoadjuvant Chemotherapy in High-Risk Soft Tissue Sarcomas: Final Results of a Randomized Trial From Italian (ISG), Spanish (GEIS), French (FSG), and Polish (PSG) Sarcoma Groups. J Clin Oncol. 2020; 38(19): 2178–2186.
  140. von Mehren M, Randall RL, Benjamin RS, et al. Soft Tissue Sarcoma, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018; 16(5): 536–563.
  141. Frustaci S, Gherlinzoni F, De Paoli A, et al. Adjuvant chemotherapy for adult soft tissue sarcomas of the extremities and girdles: results of the Italian randomized cooperative trial. J Clin Oncol. 2001; 19(5): 1238–1247.
  142. Shi W, Indelicato DJ, Morris CG, et al. Long-term treatment outcomes for patients with synovial sarcoma: a 40-year experience at the University of Florida. Am J Clin Oncol. 2013; 36(1): 83–88.
  143. Desar IME, Fleuren EDG, van der Graaf WTA. Systemic Treatment for Adults with Synovial Sarcoma. Curr Treat Options Oncol. 2018; 19(2): 13.
  144. LeVay J, O'Sullivan B, Catton C, et al. Outcome and prognostic factors in soft tissue sarcoma in the adult. Int J Radiat Oncol Biol Phys. 1993; 27(5): 1091–1099.
  145. Sadoski C, Suit HD, Rosenberg A, et al. Preoperative radiation, surgical margins, and local control of extremity sarcomas of soft tissues. J Surg Oncol. 1993; 52(4): 223–230.
  146. Karakousis C, Driscoll D. Treatment and local control of primary extremity soft tissue sarcomas. J Surg Oncol. 1999; 71(3): 155–161, doi: 10.1002/(sici)1096-9098(199907)71:3<155::aid-jso4>3.0.co;2-7.
  147. Zagars GK, Ballo MT, Pisters PWT, et al. Prognostic factors for patients with localized soft-tissue sarcoma treated with conservation surgery and radiation therapy: an analysis of 1225 patients. Cancer. 2003; 97(10): 2530–2543.
  148. Eilber FC, Brennan MF, Riedel E, et al. Prognostic factors for survival in patients with locally recurrent extremity soft tissue sarcomas. Ann Surg Oncol. 2005; 12(3): 228–236.
  149. Torres MA, Ballo MT, Butler CE, et al. Management of locally recurrent soft-tissue sarcoma after prior surgery and radiation therapy. Int J Radiat Oncol Biol Phys. 2007; 67(4): 1124–1129.
  150. Catton C, Davis A, Bell R, et al. Soft tissue sarcoma of the extremity. Limb salvage after failure of combined conservative therapy. Radiother Oncol. 1996; 41(3): 209–214.
  151. Karakousis CP, Proimakis C, Rao U, et al. Local recurrence and survival in soft-tissue sarcomas. Ann Surg Oncol. 1996; 3(3): 255–260.
  152. Spalek M, Paterczyk HMK, Borkowska A, et al. Preoperative hypofractionated radiotherapy (RT) combined with chemotherapy in primary marginally resectable high grade soft tissue sarcomas (STS) of extremities or trunk wall: Interim analysis of prospective phase II clinical trial. Ann Oncol. 2018; 29(Suppl 8): viii585–viii586.
  153. Eggermont AM, Schraffordt Koops H, Klausner JM, et al. Isolated limb perfusion with tumor necrosis factor and melphalan for limb salvage in 186 patients with locally advanced soft tissue extremity sarcomas. The cumulative multicenter European experience. Ann Surg. 1996; 224(6): 756–64; discussion 764.
  154. Gutman M, Inbar M, Lev-Shlush D, et al. High dose tumor necrosis factor-? and melphalan administered via isolated limb perfusion for advanced limb soft tissue sarcoma results in a >90% response rate and limb preservation. Cancer. 1997; 79(6): 1129–1137, doi: 10.1002/(sici)1097-0142(19970315)79:6<1129::aid-cncr11>3.0.co;2-1.
  155. Lejeune FJ, Pujol N, Liénard D, et al. Limb salvage by neoadjuvant isolated perfusion with TNFalpha and melphalan for non-resectable soft tissue sarcoma of the extremities. Eur J Surg Oncol. 2000; 26(7): 669–678.
  156. Noorda EM, Vrouenraets BC, Nieweg OE, et al. Isolated limb perfusion with tumor necrosis factor-alpha and melphalan for patients with unresectable soft tissue sarcoma of the extremities. Cancer. 2003; 98(7): 1483–1490.
  157. Boere T, Huis In 't Veld EA, Deroose JP, et al. Isolated limb perfusion with tumor necrosis factor and melphalan prevents amputation in patients with multiple sarcomas in arm or leg. Ann Surg Oncol. 2005; 12(6): 473–479.
  158. Lans TE, Grünhagen DJ, de Wilt JHW, et al. Isolated limb perfusions with tumor necrosis factor and melphalan for locally recurrent soft tissue sarcoma in previously irradiated limbs. Ann Surg Oncol. 2005; 12(5): 406–411.
  159. Grunhagen DJ, de Wilt JHW, Graveland WJ, et al. Outcome and prognostic factor analysis of 217 consecutive isolated limb perfusions with tumor necrosis factor-alpha and melphalan for limb-threatening soft tissue sarcoma. Cancer. 2006; 106(8): 1776–1784.
  160. Kepka L, DeLaney TF, Suit HD, et al. Results of radiation therapy for unresected soft-tissue sarcomas. Int J Radiat Oncol Biol Phys. 2005; 63(3): 852–859.
  161. Putnam JB. Soft part sarcomas--metastases. Chest Surg Clin N Am. 1998; 8(1): 97–118.
  162. Billingsley KG, Burt ME, Jara E, et al. Pulmonary metastases from soft tissue sarcoma: analysis of patterns of diseases and postmetastasis survival. Ann Surg. 1999; 229(5): 602–10; discussion 610.
  163. Smith R, Pak Y, Kraybill W, et al. Factors associated with actual long-term survival following soft tissue sarcoma pulmonary metastasectomy. Eur J Surg Oncol. 2009; 35(4): 356–361.
  164. Lin AY, Kotova S, Yanagawa J, et al. Risk stratification of patients undergoing pulmonary metastasectomy for soft tissue and bone sarcomas. J Thorac Cardiovasc Surg. 2015; 149(1): 85–92.
  165. Casson A, Putnam J, Natarajan G, et al. Five-year survival after pulmonary metastasectomy for adult soft tissue sarcoma. Cancer. 1992; 69(3): 662–668, doi: 10.1002/1097-0142(19920201)69:3<662::aid-cncr2820690311>3.0.co;2-i.
  166. Gadd MA, Casper ES, Woodruff JM, et al. Development and treatment of pulmonary metastases in adult patients with extremity soft tissue sarcoma. Ann Surg. 1993; 218(6): 705–712.
  167. Blackmon SH, Shah N, Roth JA, et al. Resection of pulmonary and extrapulmonary sarcomatous metastases is associated with long-term survival. Ann Thorac Surg. 2009; 88(3): 877–84; discussion 884.
  168. Geel Av, Pastorino U, Jauch K, et al. Surgical treatment of lung metastases: The European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group study of 255 patients. Cancer. 1996; 77(4): 675–682, doi: 10.1002/(sici)1097-0142(19960215)77:4<675::aid-cncr13>3.0.co;2-y.
  169. Pastorino U, Buyse M, Friedel G, et al. International Registry of Lung Metastases. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. J Thorac Cardiovasc Surg. 1997; 113(1): 37–49.
  170. Dhakal S, Corbin KS, Milano MT, et al. Stereotactic body radiotherapy for pulmonary metastases from soft-tissue sarcomas: excellent local lesion control and improved patient survival. Int J Radiat Oncol Biol Phys. 2012; 82(2): 940–945.
  171. Mehta N, Selch M, Wang PC, et al. Safety and efficacy of stereotactic body radiation therapy in the treatment of pulmonary metastases from high grade sarcoma. Sarcoma. 2013; 2013: 360214.
  172. Baumann BC, Nagda SN, Kolker JD, et al. Efficacy and safety of stereotactic body radiation therapy for the treatment of pulmonary metastases from sarcoma: A potential alternative to resection. J Surg Oncol. 2016; 114(1): 65–69.
  173. Lindsay AD, Haupt EE, Chan CM, et al. Treatment of Sarcoma Lung Metastases with Stereotactic Body Radiotherapy. Sarcoma. 2018; 2018: 9132359.
  174. Potter DA, Kinsella T, Glatstein E, et al. High-grade soft tissue sarcomas of the extremities. Cancer. 1986; 58(1): 190–205, doi: 10.1002/1097-0142(19860701)58:1<190::aid-cncr2820580133>3.0.co;2-5.
  175. Mir O, Brodowicz T, Italiano A, et al. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016; 17(12): 1732–1742.
  176. Rosen G, Forscher C, Lowenbraun S, et al. Synovial sarcoma. Uniform response of metastases to high dose ifosfamide. Cancer. 1994; 73(10): 2506–2511, doi: 10.1002/1097-0142(19940515)73:10<2506::aid-cncr2820731009>3.0.co;2-s.
  177. Nielsen OS, Judson I, van Hoesel Q, et al. Effect of high-dose ifosfamide in advanced soft tissue sarcomas. A multicentre phase II study of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer. 2000; 36(1): 61–67.
  178. Noujaim J, Constantinidou A, Messiou C, et al. Successful Ifosfamide Rechallenge in Soft-Tissue Sarcoma. Am J Clin Oncol. 2018; 41(2): 147–151.
  179. Rahal A, Cioffi A, Rahal C, et al. High-dose ifosfamide (HDI) in metastatic synovial sarcoma: The Institut Gustave Roussy experience. Journal of Clinical Oncology. 2012; 30(15_suppl): 10044–10044.
  180. Moreau-Bachelard C, Campion L, Toulmonde M, et al. Patterns of care and outcomes of 417 patients with METAstatic SYNovial sarcoma (METASYN): real-life data from the French Sarcoma Group (FSG). ESMO Open. 2022; 7(2): 100402.
  181. Sleijfer S, Ray-Coquard I, Papai Z, et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). J Clin Oncol. 2009; 27(19): 3126–3132.
  182. van der Graaf WTA, Blay JY, Chawla SP, et al. EORTC Soft Tissue and Bone Sarcoma Group, PALETTE study group. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012; 379(9829): 1879–1886.
  183. Sroussi MD, Grecea AM. Pazopanib in advanced or metastatic synovial sarcoma: the Gustave Roussy experience. Ann Oncol. 2018; 29(suppl_8): viii576–viii595.
  184. Casanova M, Basso E, Magni C, et al. Response to pazopanib in two pediatric patients with pretreated relapsing synovial sarcoma. Tumori. 2017; 103(1): e1–e3.
  185. Kawai A, Araki N, Sugiura H, et al. Trabectedin monotherapy after standard chemotherapy versus best supportive care in patients with advanced, translocation-related sarcoma: a randomised, open-label, phase 2 study. Lancet Oncol. 2015; 16(4): 406–416.
  186. Sanfilippo R, Dileo P, Blay JY, et al. Trabectedin in advanced synovial sarcomas: a multicenter retrospective study from four European institutions and the Italian Rare Cancer Network. Anticancer Drugs. 2015; 26(6): 678–681.
  187. Schöffski P, Ray-Coquard IL, Cioffi A, et al. European Organisation for Research and Treatment of Cancer (EORTC) Soft Tissue and Bone Sarcoma Group (STBSG). Activity of eribulin mesylate in patients with soft-tissue sarcoma: a phase 2 study in four independent histological subtypes. Lancet Oncol. 2011; 12(11): 1045–1052.
  188. Kogushi K, LoPresti M, Ikeda S. Systematic literature review of clinical outcomes in adults with metastatic or advanced synovial sarcoma. Future Oncol. 2020; 16(35): 2997–3013.
  189. Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017; 18(11): 1493–1501.
  190. D'Angelo SP, Mahoney MR, Van Tine BA, et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018; 19(3): 416–426.
  191. Pollack SM, He Q, Yearley JH, et al. T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death-ligand 1 expression in patients with soft tissue sarcomas. Cancer. 2017; 123(17): 3291–3304.
  192. Lai JP, Rosenberg AZ, Miettinen MM, et al. NY-ESO-1 expression in sarcomas: A diagnostic marker and immunotherapy target. Oncoimmunology. 2012; 1(8): 1409–1410.
  193. Kakimoto T, Matsumine A, Kageyama S, et al. Immunohistochemical expression and clinicopathological assessment of the cancer testis antigens NY-ESO-1 and MAGE-A4 in high-grade soft-tissue sarcoma. Oncol Lett. 2019; 17(4): 3937–3943.
  194. Robbins PF, Morgan RA, Feldman SA, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011; 29(7): 917–924.
  195. Robbins PF, Kassim SH, Tran TLN, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. 2015; 21(5): 1019–1027.
  196. D'Angelo SP, Melchiori L, Merchant MS, et al. Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1 T Cells in Synovial Sarcoma. Cancer Discov. 2018; 8(8): 944–957.
  197. Zhang X, Weng D, Pan Q, et al. Phase I clinical trial to assess safety, pharmacokinetics (PK), pharmacodynamics (PD), and efficacy of NY-ESO-1–specific TCR T-cells (TAEST16001) in HLA-A*02:01 patients with advanced soft tissue sarcoma. J Clin Oncol. 2022; 40(16_suppl): 11502–11502.
  198. Pollack SM, Lu H, Gnjatic S, et al. First-in-Human Treatment With a Dendritic Cell-targeting Lentiviral Vector-expressing NY-ESO-1, LV305, Induces Deep, Durable Response in Refractory Metastatic Synovial Sarcoma Patient. J Immunother. 2017; 40(8): 302–306.
  199. Chawla SP, Van Tine BA, Pollack SM, et al. Phase II Randomized Study of CMB305 and Atezolizumab Compared With Atezolizumab Alone in Soft-Tissue Sarcomas Expressing NY-ESO-1. J Clin Oncol. 2022; 40(12): 1291–1300.
  200. Kadoch C, Crabtree GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. 2013; 153(1): 71–85.
  201. Gounder M, Stacchiotti S, Schöffski P, et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with INI1 negative epithelioid sarcoma (NCT02601950). J Clin Oncol. 2017; 35(15_suppl): 11058–11058.
  202. Su Le, Sampaio AV, Jones KB, et al. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell. 2012; 21(3): 333–347.
  203. Ito T, Ouchida M, Morimoto Y, et al. Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett. 2005; 224(2): 311–319.
  204. Watanabe R, Ui A, Kanno SI, et al. SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability. Cancer Res. 2014; 74(9): 2465–2475.
  205. Brien GL, Remillard D, Shi J, et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. Elife. 2018; 7.
  206. Chi Y, Yao Y, Wang S, et al. Anlotinib for metastasis soft tissue sarcoma: A randomized, double-blind, placebo-controlled and multi-centered clinical trial. J Clin Oncol. 2018; 36(15_suppl): 11503–11503.
  207. Tine BV, Chawla S, Trent J, et al. A phase III study (APROMISS) of AL3818 (Catequentinib, Anlotinib) hydrochloride monotherapy in subjects with metastatic or advanced synovial sarcoma. J Clin Oncol. 2021; 39(15_suppl): 11505–11505.
  208. Riedel RF, Jones RL, Italiano A, et al. Systemic Anti-Cancer Therapy in Synovial Sarcoma: A Systematic Review. Cancers (Basel). 2018; 10(11).
  209. Mi YJ, Liang YJ, Huang HB, et al. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res. 2010; 70(20): 7981–7991.
  210. Wang Y, Lu M, Zhou Y, et al. The Efficacy and Safety of Apatinib in Advanced Synovial Sarcoma: A Case Series of Twenty-One Patients in One Single Institution. Cancer Manag Res. 2020; 12: 5255–5264.
  211. Suminoe A, Matsuzaki A, Hattori H, et al. Immunotherapy with autologous dendritic cells and tumor antigens for children with refractory malignant solid tumors. Pediatr Transplant. 2009; 13(6): 746–753.
  212. Kawaguchi S, Wada T, Ida K, et al. Phase I vaccination trial of SYT-SSX junction peptide in patients with disseminated synovial sarcoma. J Transl Med. 2005; 3(1): 1.
  213. Sudo H, Tsuji AB, Sugyo A, et al. FZD10-targeted α-radioimmunotherapy with Ac-labeled OTSA101 achieves complete remission in a synovial sarcoma model. Cancer Sci. 2022; 113(2): 721–732.
  214. Stacchiotti S, Van Tine BA. Synovial Sarcoma: Current Concepts and Future Perspectives. J Clin Oncol. 2018; 36(2): 180–187.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest  VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl