dostęp otwarty

Tom 10, Nr 1 (2024)
Wytyczne / stanowisko ekspertów
Opublikowany online: 2023-05-23
Pobierz cytowanie

Zalecenia postępowania diagnostyczno-terapeutycznego w raku gruczołu krokowego — stanowisko Polskiego Towarzystwa Onkologii Klinicznej i Polskiego Towarzystwa Urologicznego

Piotr Wysocki1, Piotr Chłosta2, Artur Antoniewicz3, Robert Chrzan4, Anna K. Czech5, Jakub Dobruch6, Katarzyna Gronostaj25, Maciej Krzakowski7, Jakub Kucharz8, Krzysztof Małecki9, Piotr Milecki1011, Krzysztof Okoń1213, Paweł Potocki1, Mikołaj Przydacz25, Iwona Skoneczna1415, Bartosz Wasąg1617, Paweł Wiechno8, Jakub Żołnierek18
Onkol Prakt Klin Edu 2024;10(1):1-72.
Afiliacje
  1. Katedra i Klinika Onkologii, Uniwersytet Jagielloński — Collegium Medicum w Krakowie
  2. Katedra i Klinika Urologii, Uniwersytet Jagielloński — Collegium Medicum w Krakowie
  3. Międzyleski Szpital Specjalistyczny w Warszawie
  4. Katedra Radiologii, Uniwersytet Jagielloński — Collegium Medicum w Krakowie
  5. Oddział Kliniczny Urologii i Urologii Onkologicznej, Szpital Uniwersytecki w Krakowie
  6. Klinika Urologii, Centrum Medyczne Kształcenia Podyplomowego w Warszawie
  7. Klinika Nowotworów Płuca i Klatki Piersiowej, Narodowy Instytut Onkologii im. M. Skłodowskiej-Curie — Państwowy Instytut Badawczy w Warszawie
  8. Klinika Nowotworów Układu Moczowego, Narodowy Instytut Onkologii im. M. Skłodowskiej-Curie — Państwowy Instytut Badawczy w Warszawie
  9. Zakład Radioterapii Dzieci i Dorosłych, Uniwersytecki Szpital Dziecięcy w Krakowie
  10. Wielkopolskie Centrum Onkologii w Poznaniu
  11. Katedra Elektroradiologii, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu
  12. Katedra Patomorfologii, Uniwersytet Jagielloński — Collegium Medicum w Krakowie
  13. Zakład Patomorfologii Szpitala Uniwersyteckiego w Krakowie
  14. Szpital Grochowski im. dr med. Rafała Masztaka w Warszawie
  15. Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie — Państwowy Instytut Badawczy w Warszawie
  16. Katedra i Zakład Biologii i Genetyki Medycznej, Gdański Uniwersytet Medyczny, Gdańsk
  17. Laboratorium Genetyki Klinicznej, Uniwersyteckie Centrum Kliniczne, Gdańsk
  18. Oddział Onkologii i Hematologii z Poradnią Wojewódzkiego Szpitala Specjalistycznego w Białej Podlaskiej, LuxMed Onkologia w Warszawie

dostęp otwarty

Tom 10, Nr 1 (2024)
WYTYCZNE POSTĘPOWANIA DIAGNOSTYCZNO-TERAPEUTYCZNEGO
Opublikowany online: 2023-05-23

Streszczenie

Brak

Streszczenie

Brak
Pobierz cytowanie

Słowa kluczowe

rak gruczołu krokowego; patomorfologia; diagnostyka obrazowa; prostatektomia; radioterapia; nowoczesne leki hormonalne; chemioterapia; inhibitor PARP; radioizotopy

Informacje o artykule
Tytuł

Zalecenia postępowania diagnostyczno-terapeutycznego w raku gruczołu krokowego — stanowisko Polskiego Towarzystwa Onkologii Klinicznej i Polskiego Towarzystwa Urologicznego

Czasopismo

Onkologia w Praktyce Klinicznej - Edukacja

Numer

Tom 10, Nr 1 (2024)

Typ artykułu

Wytyczne / stanowisko ekspertów

Strony

1-72

Opublikowany online

2023-05-23

Wyświetlenia strony

1953

Wyświetlenia/pobrania artykułu

2268

Rekord bibliograficzny

Onkol Prakt Klin Edu 2024;10(1):1-72.

Słowa kluczowe

rak gruczołu krokowego
patomorfologia
diagnostyka obrazowa
prostatektomia
radioterapia
nowoczesne leki hormonalne
chemioterapia
inhibitor PARP
radioizotopy

Autorzy

Piotr Wysocki
Piotr Chłosta
Artur Antoniewicz
Robert Chrzan
Anna K. Czech
Jakub Dobruch
Katarzyna Gronostaj
Maciej Krzakowski
Jakub Kucharz
Krzysztof Małecki
Piotr Milecki
Krzysztof Okoń
Paweł Potocki
Mikołaj Przydacz
Iwona Skoneczna
Bartosz Wasąg
Paweł Wiechno
Jakub Żołnierek

Referencje (365)
  1. Montori VM, Guyatt GH. Progress in evidence-based medicine. JAMA. 2008; 300(15): 1814–1816.
  2. Cherny NI, Dafni U, Bogaerts J, et al. ESMO-Magnitude of Clinical Benefit Scale version 1.1. Ann Oncol. 2017; 28(10): 2340–2366.
  3. Krzakowski M, Wysocki P, Jassem J, et al. Algorytm oceny wartości nowych leków przeciwnowotworowych — propozycje Polskiego Towarzystwa Onkologii Klinicznej i Polskiego Towarzystwa Onkologicznego. Onkol Prak Klin. 2015; 11(1): 9–15.
  4. Didkowska J, Wojciechowska U, Michałek I. Nowotwory złośliwe w Polsce w 2019 roku (Cancer in Poland in 2019). Polish National Cancer Registry, Warszawa 2021.
  5. Didkowska J, Wojciechowska U. Zachorowania i zgony na nowotwory złośliwe w Polsce. Krajowy Rejestr Nowotworów, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie – Państwowy Instytut Badawczy. http://onkologia.org.pl/raporty/.
  6. Bell KJL, Del Mar C, Wright G, et al. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer. 2015; 137(7): 1749–1757.
  7. Siegel DA, O'Neil ME, Richards TB, et al. Prostate Cancer Incidence and Survival, by Stage and Race/Ethnicity - United States, 2001-2017. MMWR Morb Mortal Wkly Rep. 2020; 69(41): 1473–1480.
  8. Hałoń A, Powała A. Rak stercza. In: Nasierowska-Guttmejer A, Górnicka B. ed. Zalecenia do diagnostyki histopatologicznej nowotworów. Centrum Onkologii, Oddział Gliwice, Polskie Towarzystwo Patologów 2013.
  9. Okoń K, Hałoń A. Układ moczowo-płciowy. W: standardy oceny makroskopowej materiału biopsyjnego i operacyjnego u chorych na nowotwory złośliwe. Pol J Pathol. 2015; 66(4): S56–S64.
  10. Langfort R, Marszałek A, Ryś J (ed.). Patomorfologia: standardy i przykłady dobrej praktyki oraz elementy diagnostyki różnicowej Wytyczne dla pracowni/zakładów patomorfologii. http://pol-pat.pl/index.php/standardy-i-wytyczne-w-patomorfologii/.
  11. Langfort R, Marszałek A, Ryś J (ed.). Standardy organizacyjne oraz standardy postępowania w patomorfologii. Wytyczne dla pracowni/zakładów patomorfologii. http://pol-pat.pl/index.php/standardy-i-wytyczne-w-patomorfologii/.
  12. Buyyounouski MK, Choyke PL, Kattan MW. Prostate. In: Amin RB, Kattan MW. ed. AJCC cancer staging manual, 8th edition. Springer 2017.
  13. Netto GJ, Mahul BA, Kench JG. Tumours of the prostate. In: WHO Classification of Tumours Editorial Board. ed. Urinary and male genital tumours. International Agency for Research on Cancer, Lyon 2022.
  14. Epstein JI, Amin MB, Fine SW, et al. The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Arch Pathol Lab Med. 2021; 145(4): 461–493.
  15. Epstein JI, Hirsch MS. A Comparison of Genitourinary Pathology Society (GUPS) and International Society of Urological Pathology (ISUP) Prostate Cancer Grading Guidelines. Am J Surg Pathol. 2021; 45(7): 1005–1007.
  16. Epstein JI, Kryvenko ON. A Comparison of Genitourinary Society Pathology and International Society of Urological Pathology Prostate Cancer Guidelines. Eur Urol. 2021; 79(1): 3–5.
  17. Amin MB, Epstein JI, Ulbright TM, et al. Members of the ISUP Immunohistochemistry in Diagnostic Urologic Pathology Group. Best practices recommendations in the application of immunohistochemistry in urologic pathology: report from the International Society of Urological Pathology consensus conference. Am J Surg Pathol. 2014; 38(8): 1017–1022.
  18. Epstein JI, Egevad L, Humphrey PA, et al. Members of the ISUP Immunohistochemistry in Diagnostic Urologic Pathology Group. Best practices recommendations in the application of immunohistochemistry in the prostate: report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol. 2014; 38(8): e6–ee19.
  19. Brierley JD, Gospodarowicz MK, Wittekind C. TNM Classification of Malignant Tumours, 8th Edition. John Wiley & Sons 2017.
  20. Smeenge M, Barentsz J, Cosgrove D, et al. Role of transrectal ultrasonography (TRUS) in focal therapy of prostate cancer: report from a Consensus Panel. BJU Int. 2012; 110(7): 942–948.
  21. Bratan F, Niaf E, Melodelima C, et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol. 2013; 23(7): 2019–2029.
  22. Johnson D, Raman S, Mirak S, et al. Detection of Individual Prostate Cancer Foci via Multiparametric Magnetic Resonance Imaging. European Urology. 2019; 75(5): 712–720.
  23. Dickinson L, Ahmed HU, Allen C, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol. 2011; 59(4): 477–494.
  24. Christophe C, Montagne S, Bourrelier S, et al. Prostate cancer local staging using biparametric MRI: assessment and comparison with multiparametric MRI. Eur J Radiol. 2020; 132: 109350.
  25. PI-RADS Steering Committee. PI-RADS® Prostate Imaging - Reporting and Data System 2019 Version 2.1. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/PI-RADS/ (20.07.2022).
  26. Mottet N, et al. Members of the EAU - EANM - ESTRO - ESUR - ISUP - SIOG Prostate Cancer Guidelines Panel. EAU - EANM - ESTRO - ESUR - ISUP – SIOG Guidelines on Prostate Cancer 2022. https://uroweb.org/guideline/prostate-cancer/ (20.07.2022).
  27. Shen G, Deng H, Hu S, et al. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol. 2014; 43(11): 1503–1513.
  28. Hövels AM, Heesakkers RAM, Adang EM, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008; 63(4): 387–395.
  29. Tiguert R, Gheiler E, Tefilli M, et al. Lymph node size does not correlate with the presence of prostate cancer metastasis. Urology. 1999; 53(2): 367–371.
  30. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009; 45(2): 228–247.
  31. Corfield J, Perera M, Bolton D, et al. Ga-prostate specific membrane antigen (PSMA) positron emission tomography (PET) for primary staging of high-risk prostate cancer: a systematic review. World J Urol. 2018; 36(4): 519–527.
  32. de Bono J, Mateo J, Fizazi K, et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2020; 382(22): 2091–2102.
  33. Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med. 2016; 375(5): 443–453.
  34. Abida W, Campbell D, Patnaik A, et al. Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study. Clin Cancer Res. 2020; 26(11): 2487–2496.
  35. Robinson D, Allen EV, Wu YM, et al. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell. 2015; 162(2): 454.
  36. Abida W, Armenia J, Gopalan A, et al. Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making. JCO Precis Oncol. 2017; 2017.
  37. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology: prostate cancer v4. [May 2022]. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf.
  38. Bono JSde, Fizazi K, Saad F, et al. Central, prospective detection of homologous recombination repair gene mutations (HRRm) in tumour tissue from >4000 men with metastatic castration-resistant prostate cancer (mCRPC) screened for the PROfound study. Ann Oncol. 2019; 30: v328–v329.
  39. Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A. 2019; 116(23): 11428–11436.
  40. Quigley DA, Dang HaX, Zhao SG, et al. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell. 2018; 174(3): 758–769.e9.
  41. van Dessel LF, van Riet J, Smits M, et al. The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun. 2019; 10(1): 5251.
  42. Mateo J, Seed G, Bertan C, et al. Genomics of lethal prostate cancer at diagnosis and castration resistance. J Clin Invest. 2020; 130(4): 1743–1751.
  43. Russo A, Incorvaia L, Capoluongo E, et al. Italian Scientific Societies. Implementation of preventive and predictive BRCA testing in patients with breast, ovarian, pancreatic, and prostate cancer: a position paper of Italian Scientific Societies. ESMO Open. 2022; 7(3): 100459.
  44. Gonzalez D, Mateo J, Stenzinger A, et al. Practical considerations for optimising homologous recombination repair mutation testing in patients with metastatic prostate cancer. J Pathol Clin Res. 2021; 7(4): 311–325.
  45. Shi W, Ng CKY, Lim RS, et al. Reliability of Whole-Exome Sequencing for Assessing Intratumor Genetic Heterogeneity. Cell Rep. 2018; 25(6): 1446–1457.
  46. Mosele F, Remon J, Mateo J, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020; 31(11): 1491–1505.
  47. Zhu J, Tucker M, Marin D, et al. Clinical utility of FoundationOne tissue molecular profiling in men with metastatic prostate cancer. Urol Oncol. 2019; 37(11): 813.e1–813.e9.
  48. Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020; 21(1): 162–174.
  49. Human Genome Variation Society. https://www.hgvs.org/content/guidelines.
  50. Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5): 405–424.
  51. Li MM, Datto M, Duncavage EJ, et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017; 19(1): 4–23.
  52. Stamey TA, Yang N, Hay AR, et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med. 1987; 317(15): 909–916.
  53. Catalona W, Richie J, Ahmann F, et al. Comparison of Digital Rectal Examination and Serum Prostate Specific Antigen in the Early Detection of Prostate Cancer: Results of a Multicenter Clinical Trial of 6,630 Men. J Urol. 1994; 151(5): 1283–1290.
  54. Semjonow A, Brandt B, Oberpenning F, et al. Discordance of assay methods creates pitfalls for the interpretation of prostate-specific antigen values. Prostate Suppl. 1996; 7: 3–16.
  55. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 2004; 350(22): 2239–2246.
  56. Eklund M, Jäderling F, Discacciati A, et al. STHLM3 consortium. MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N Engl J Med. 2021; 385(10): 908–920.
  57. Wagaskar V, Sobotka S, Ratnani P, et al. A 4K score/ MRI ‐based nomogram for predicting prostate cancer, clinically significant prostate cancer, and unfavorable prostate cancer. Cancer Reports. 2021; 4(4): e1357.
  58. Van Poppel H, Roobol MJ, Chapple CR, et al. Prostate-specific Antigen Testing as Part of a Risk-Adapted Early Detection Strategy for Prostate Cancer: European Association of Urology Position and Recommendations for 2021. Eur Urol. 2021; 80(6): 703–711.
  59. Omri N, Kamil M, Alexander K, et al. Association between PSA density and pathologically significant prostate cancer: The impact of prostate volume. Prostate. 2020; 80(16): 1444–1449.
  60. Nordström T, Akre O, Aly M, et al. Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostatic Dis. 2018; 21(1): 57–63.
  61. Maggi M, Panebianco V, Mosca A, et al. Prostate Imaging Reporting and Data System 3 Category Cases at Multiparametric Magnetic Resonance for Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus. 2020; 6(3): 463–478.
  62. Carter HB, Pearson JD, Metter EJ, et al. Longitudinal Evaluation of Prostate-Specific Antigen Levels in Men With and Without Prostate Disease. JAMA. 1992; 267(16): 2215–2220.
  63. Schmid HP, McNeal J, Stamey T. Observations on the doubling time of prostate cancer.The use of serial prostate-specific antigen in patients with untreated disease as a measure of increasing cancer volume. Cancer. 1993; 71(6): 2031–2040, doi: 10.1002/1097-0142(19930315)71:6<2031::aid-cncr2820710618>3.0.co;2-q.
  64. Arlen PM, Bianco F, Dahut WL, et al. Prostate Specific Antigen Working Group guidelines on prostate specific antigen doubling time. J Urol. 2008; 179(6): 2181–5; discussion 2185-6.
  65. Vickers AJ, Brewster SF. PSA Velocity and Doubling Time in Diagnosis and Prognosis of Prostate Cancer. Br J Med Surg Urol. 2012; 5(4): 162–168.
  66. O'Brien MF, Cronin AM, Fearn PA, et al. Pretreatment prostate-specific antigen (PSA) velocity and doubling time are associated with outcome but neither improves prediction of outcome beyond pretreatment PSA alone in patients treated with radical prostatectomy. J Clin Oncol. 2009; 27(22): 3591–3597.
  67. Heidenreich A. Identification of high-risk prostate cancer: role of prostate-specific antigen, PSA doubling time, and PSA velocity. Eur Urol. 2008; 54(5): 976–7; discussion 978.
  68. Ramírez M, Nelson E, White Rd, et al. Current Applications for Prostate-Specific Antigen Doubling Time. Eur Urol. 2008; 54(2): 291–300.
  69. Vickers AJ, Savage C, O'Brien MF, et al. Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J Clin Oncol. 2009; 27(3): 398–403.
  70. Stephan C, Lein M, Jung K, et al. The influence of prostate volume on the ratio of free to total prostate specific antigen in serum of patients with prostate carcinoma and benign prostate hyperplasia. Cancer. 1997; 79(1): 104–109, doi: 10.1002/(sici)1097-0142(19970101)79:1<104::aid-cncr15>3.0.co;2-8.
  71. Catalona WJ, Partin AW, Slawin KM, et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA. 1998; 279(19): 1542–1547.
  72. Huang Y, Li ZZ, Huang YL, et al. Value of free/total prostate-specific antigen (f/t PSA) ratios for prostate cancer detection in patients with total serum prostate-specific antigen between 4 and 10 ng/mL: A meta-analysis. Medicine (Baltimore). 2018; 97(13): e0249.
  73. Bryant RJ, Sjoberg DD, Vickers AJ, et al. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the ProtecT study. J Natl Cancer Inst. 2015; 107(7): djv095.
  74. de la Calle C, Patil D, Wei JT, et al. Multicenter Evaluation of the Prostate Health Index to Detect Aggressive Prostate Cancer in Biopsy Naïve Men. J Urol. 2015; 194(1): 65–72.
  75. Catalona WJ, Partin AW, Sanda MG, et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol. 2011; 185(5): 1650–1655.
  76. Nordström T, Vickers A, Assel M, et al. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. Eur Urol. 2015; 68(1): 139–146.
  77. Klein E, Chait A, Hafron J, et al. The Single-parameter, Structure-based IsoPSA Assay Demonstrates Improved Diagnostic Accuracy for Detection of Any Prostate Cancer and High-grade Prostate Cancer Compared to a Concentration-based Assay of Total Prostate-specific Antigen: A Preliminary Report. Eur Urol. 2017; 72(6): 942–949.
  78. Stovsky M, Klein EA, Chait A, et al. Clinical Validation of IsoPSA™, a Single Parameter, Structure Based Assay for Improved Detection of High Grade Prostate Cancer. J Urol. 2019; 201(6): 1115–1120.
  79. Eklund M, Jäderling F, Discacciati A, et al. STHLM3 consortium. MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N Engl J Med. 2021; 385(10): 908–920.
  80. Loeb S, Gonzalez CM, Roehl KA, et al. Pathological characteristics of prostate cancer detected through prostate specific antigen based screening. J Urol. 2006; 175(3 Pt 1): 902–906.
  81. Naji L, Randhawa H, Sohani Z, et al. Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. Ann Fam Med. 2018; 16(2): 149–154.
  82. Roobol MJ, Roobol DW, Schröder FH. Is additional testing necessary in men with prostate-specific antigen levels of 1.0 ng/mL or less in a population-based screening setting? (ERSPC, section Rotterdam). Urology. 2005; 65(2): 343–346.
  83. Martin RM, Donovan JL, Turner EL, et al. Effect of a Low-Intensity PSA-Based Screening Intervention on Prostate Cancer Mortality: The CAP Randomized Clinical Trial. JAMA. 2018; 319(9): 883–895.
  84. Ahmed H, Bosaily AES, Brown L, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017; 389(10071): 815–822.
  85. Stephenson AJ, Kattan MW, Eastham JA, et al. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J Clin Oncol. 2006; 24(24): 3973–3978.
  86. Ploussard G, Fossati N, Wiegel T, et al. Management of Persistently Elevated Prostate-specific Antigen After Radical Prostatectomy: A Systematic Review of the Literature. Eur Urol Oncol. 2021; 4(2): 150–169.
  87. Grivas N, de Bruin D, Barwari K, et al. Ultrasensitive prostate-specific antigen level as a predictor of biochemical progression after robot-assisted radical prostatectomy: Towards risk adapted follow-up. J Clin Lab Anal. 2019; 33(2): e22693.
  88. Zakaria AS, Schwartz RN, Hodhod A, et al. Detectable Prostate-specific antigen value between 0.01 and 0.1 ng/ml following robotic-assisted radical prostatectomy (RARP): does it correlate with future biochemical recurrence? World J Urol. 2021; 39(6): 1853–1860.
  89. Teeter AE, Griffin K, Howard LE, et al. Does Early Prostate Specific Antigen Doubling Time after Radical Prostatectomy, Calculated Prior to Prostate Specific Antigen Recurrence, Correlate with Prostate Cancer Outcomes? A Report from the SEARCH Database Group. J Urol. 2018; 199(3): 713–718.
  90. Ray ME, Thames HD, Levy LB, et al. PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys. 2006; 64(4): 1140–1150.
  91. Roach 3rd M, Hanks G, Thames Jr H, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys. 2006; 65(4): 965–974.
  92. Harshman LC, Chen YH, Liu G, et al. ECOG-ACRIN 3805 Investigators. Seven-Month Prostate-Specific Antigen Is Prognostic in Metastatic Hormone-Sensitive Prostate Cancer Treated With Androgen Deprivation With or Without Docetaxel. J Clin Oncol. 2018; 36(4): 376–382.
  93. Cinislioglu AE, Demirdogen SO, Cinislioglu N, et al. Variation of Serum PSA Levels in COVID-19 Infected Male Patients with Benign Prostatic Hyperplasia (BPH): A Prospective Cohort Studys. Urology. 2022; 159: 16–21.
  94. Cerruto MA, Vianello F, D'Elia C, et al. Transrectal versus transperineal 14-core prostate biopsy in detection of prostate cancer: a comparative evaluation at the same institution. Arch Ital Urol Androl. 2014; 86(4): 284–287.
  95. Guo LH, Wu R, Xu HX, et al. Comparison between Ultrasound Guided Transperineal and Transrectal Prostate Biopsy: A Prospective, Randomized, and Controlled Trial. Sci Rep. 2015; 5: 16089.
  96. Wegelin O, Exterkate L, van der Leest M, et al. Complications and Adverse Events of Three Magnetic Resonance Imaging-based Target Biopsy Techniques in the Diagnosis of Prostate Cancer Among Men with Prior Negative Biopsies: Results from the FUTURE Trial, a Multicentre Randomised Controlled Trial. Eur Urol Oncol. 2019; 2(6): 617–624.
  97. Pradere B, Veeratterapillay R, Dimitropoulos K, et al. Nonantibiotic Strategies for the Prevention of Infectious Complications following Prostate Biopsy: A Systematic Review and Meta-Analysis. J Urol. 2021; 205(3): 653–663.
  98. Pepdjonovic L, Tan GH, Huang S, et al. Zero hospital admissions for infection after 577 transperineal prostate biopsies using single-dose cephazolin prophylaxis. World J Urol. 2017; 35(8): 1199–1203.
  99. Pepe P, Aragona F. Morbidity after transperineal prostate biopsy in 3000 patients undergoing 12 vs 18 vs more than 24 needle cores. Urology. 2013; 81(6): 1142–1146.
  100. Pilatz A, Dimitropoulos K, Veeratterapillay R, et al. Antibiotic Prophylaxis for the Prevention of Infectious Complications following Prostate Biopsy: A Systematic Review and Meta-Analysis. J Urol. 2020; 204(2): 224–230.
  101. Borówka A. Dobruch J. Chłosta P.L.: Urologia onkologiczna w Polsce. Post N Med. 2012; 25: 371–386.
  102. Walsh PC. Anatomic radical prostatectomy: evolution of the surgical technique. J Urol. 1998; 160(6 Pt 2): 2418–2424.
  103. Ficarra V, Novara G, Artibani W, et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol. 2009; 55(5): 1037–1063.
  104. Coelho RF, Rocco B, Patel MB, et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a critical review of outcomes reported by high-volume centers. J Endourol. 2010; 24(12): 2003–2015.
  105. Dobruch J, Borówka A, Antoniewicz A, et al. Radical prostatectomy in Poland. Urol Pol. 2005; 58: 108–111.
  106. Chłosta P, Drewa T, Jaskulski J, et al. Laparoscopic radical prostatectomy with bladder neck and neurovascular bundles preservation: technique and surgical outcomes. Post N Med. 2012; 25: 306–310.
  107. Weldon VE. Technique of modern radical perineal prostatectomy. Urology. 2002; 60(4): 689–694.
  108. Briganti A, Blute M, Eastham J, et al. Pelvic Lymph Node Dissection in Prostate Cancer. Eur Urol. 2009; 55(6): 1251–1265.
  109. Briganti A, Karnes RJ, Da Pozzo LF, et al. Combination of adjuvant hormonal and radiation therapy significantly prolongs survival of patients with pT2-4 pN+ prostate cancer: results of a matched analysis. Eur Urol. 2011; 59(5): 832–840.
  110. Engel J, Bastian PJ, Baur H, et al. Survival benefit of radical prostatectomy in lymph node-positive patients with prostate cancer. Eur Urol. 2010; 57(5): 754–761.
  111. Steuber T, Budäus L, Walz J, et al. Radical prostatectomy improves progression-free and cancer-specific survival in men with lymph node positive prostate cancer in the prostate-specific antigen era: a confirmatory study. BJU Int. 2011; 107(11): 1755–1761.
  112. Jarzemski P, Listopadzki S. Laparoskopowa radykalna prostatektomia. Dostęp przezotrzewnowy. In: Chłosta P, Słojewskiego M. ed. Atlas laparoskopii urologicznej. Polskie Towarzystwo Urologiczne, Warszawa 2008: 85–93.
  113. Chłosta P. Radykalne wycięcie gruczołu krokowego metodą laparoskopii przedotrzewnowej (LRP). In: Chłosta P, Słojewskiego M. ed. Atlas laparoskopii urologicznej. Polskie Towarzystwo Urologiczne, Warszawa 2008: 95–108.
  114. Partin AW, Oesterling JE. The clinical usefulness of prostate specific antigen: update 1994. J Urol. 1994; 152(5 Pt 1): 1358–1368.
  115. Patel A, Dorey F, Franklin J, et al. RECURRENCE PATTERNS AFTER RADICAL RETROPUBIC PROSTATECTOMY. J Urol. 1997; 158: 1441–1445.
  116. Isbarn H, Wanner M, Salomon G, et al. Long-term data on the survival of patients with prostate cancer treated with radical prostatectomy in the prostate-specific antigen era. BJU Int. 2010; 106(1): 37–43.
  117. Porter CR, Kodama K, Gibbons RP, et al. 25-year prostate cancer control and survival outcomes: a 40-year radical prostatectomy single institution series. J Urol. 2006; 176(2): 569–574.
  118. Roehl KA, Han M, Ramos CG, et al. Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. J Urol. 2004; 172(3): 910–914.
  119. Hull GW, Rabbani F, Abbas F, et al. Cancer control with radical prostatectomy alone in 1,000 consecutive patients. J Urol. 2002; 167(2 Pt 1): 528–534.
  120. Han M, Partin AW, Pound CR, et al. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15-year Johns Hopkins experience. Urol Clin North Am. 2001; 28(3): 555–565.
  121. Dobruch J, Borówka A, Dzik T, et al. Positive surgical margins after radical prostatectomy. Cz. I. Urol Pol. 2006; 59: 87–94.
  122. Fleshner NE, Evans A, Chadwick K, et al. Clinical significance of the positive surgical margin based upon location, grade, and stage. Urol Oncol. 2010; 28(2): 197–204.
  123. Dobruch J, Borówka A, Grotthuss G, et al. Borówka A. Grotthuss G.: Porównanie stopnia zaawansowania i stopnia złośliwości raka stercza określonych przed i po prostatektomii radykalnej. Urol Pol. 2007; 60(1): 30–37.
  124. Paul A, Ploussard G, Nicolaiew N, et al. Oncologic outcome after extraperitoneal laparoscopic radical prostatectomy: midterm follow-up of 1115 procedures. Eur Urol. 2010; 57(2): 267–272.
  125. Bolla M, van Poppel H, Tombal B, et al. European Organisation for Research and Treatment of Cancer, Radiation Oncology and Genito-Urinary Groups, au nom des groupes génito-urinaire et radiothérapie de l'EORTC, European Organisation for Research and Treatment of Cancer (EORTC) Radiotherapy and Genito-urinary Groups, European Organization for Research and Treatment of Cancer. Postoperative radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC trial 22911). Lancet. 2005; 366(9485): 572–578.
  126. Van der Kwast TH, Bolla M, Van Poppel H, et al. EORTC 22911. Identification of patients with prostate cancer who benefit from immediate postoperative radiotherapy: EORTC 22911. J Clin Oncol. 2007; 25(27): 4178–4186.
  127. Wiegel T, Bottke D, Steiner U, et al. Phase III postoperative adjuvant radiotherapy after radical prostatectomy compared with radical prostatectomy alone in pT3 prostate cancer with postoperative undetectable prostate-specific antigen: ARO 96-02/AUO AP 09/95. J Clin Oncol. 2009; 27(18): 2924–2930.
  128. Vale CL, Fisher D, Kneebone A, et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. Lancet. 2020; 396(10260): 1422–1431.
  129. Tilki D, Chen MH, Wu J, et al. Adjuvant Versus Early Salvage Radiation Therapy After Radical Prostatectomy for pN1 Prostate Cancer and the Risk of Death. J Clin Oncol. 2022; 40(20): 2186–2192.
  130. Touijer K, Eastham JA, Secin FP, et al. Comprehensive prospective comparative analysis of outcomes between open and laparoscopic radical prostatectomy conducted in 2003 to 2005. J Urol. 2008; 179(5): 1811–7; discussion 1817.
  131. Rassweiler J, Seemann O, Schulze M, et al. Laparoscopic versus open radical prostatectomy: a comparative study at a single institution. J Urol. 2003; 169(5): 1689–1693.
  132. Jurczok A, Zacharias M, Wagner S, et al. Prospective non-randomized evaluation of four mediators of the systemic response after extraperitoneal laparoscopic and open retropubic radical prostatectomy. BJU Int. 2007; 99(6): 1461–1466.
  133. Briganti A, Capitanio U, Chun FKH, et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur Urol. 2006; 50(5): 1006–1013.
  134. Löppenberg B, Noldus J, Holz A, et al. Reporting complications after open radical retropubic prostatectomy using the Martin criteria. J Urol. 2010; 184(3): 944–948.
  135. Nielsen ME, Walsh PC. Systematic detection and repair of subclinical inguinal hernias at radical retropubic prostatectomy. Urology. 2005; 66(5): 1034–1037.
  136. Lepor H, Robbins D. Inguinal hernias in men undergoing open radical retropubic prostatectomy. Urology. 2007; 70(5): 961–964.
  137. Campenni MA, Harmon JD, Ginsberg PC, et al. Improved continence after radical retropubic prostatectomy using two pubo-urethral suspension stitches. Urol Int. 2002; 68(2): 109–112.
  138. Walsh PC, Marschke PL. Intussusception of the reconstructed bladder neck leads to earlier continence after radical prostatectomy. Urology. 2002; 59(6): 934–938.
  139. Abdollah F, Sun M, Suardi N, et al. Prediction of functional outcomes after nerve-sparing radical prostatectomy: results of conditional survival analyses. Eur Urol. 2012; 62(1): 42–52.
  140. Anastasiadis AG, Salomon L, Katz R, et al. Radical retropubic versus laparoscopic prostatectomy: a prospective comparison of functional outcome. Urology. 2003; 62(2): 292–297.
  141. Kim SP, Sarmast Z, Daignault S, et al. Long-term durability and functional outcomes among patients with artificial urinary sphincters: a 10-year retrospective review from the University of Michigan. J Urol. 2008; 179(5): 1912–1916.
  142. Szopiński T, Chłosta PL, Borówka A. Wyniki leczenia nietrzymania moczu z użyciem sztucznego zwieracza cewki moczowej. Post N Med. 2012; 25: 325–334.
  143. Martinez-Salamanca I, Moncada I. The role of artificial urinary sphincers in modern incontinence management. Curr Sex Health Rep. 2007; 4: 185–188.
  144. Grimsby GM, Tyson MD, Wolter CE. Early outcomes of the transobturator male sling based on body mass index. Can J Urol. 2012; 19(1): 6088–6093.
  145. Walsh PC, Marschke P, Ricker D, et al. Patient-reported urinary continence and sexual function after anatomic radical prostatectomy. Urology. 2000; 55(1): 58–61.
  146. Rogers CG, Trock BP, Walsh PC. Preservation of accessory pudendal arteries during radical retropubic prostatectomy: surgical technique and results. Urology. 2004; 64(1): 148–151.
  147. Salomon L, Anastasiadis AG, Katz R, et al. Urinary continence and erectile function: a prospective evaluation of functional results after radical laparoscopic prostatectomy. Eur Urol. 2002; 42(4): 338–343.
  148. Gill IS, Ukimura O. Thermal energy-free laparoscopic nerve-sparing radical prostatectomy: one-year potency outcomes. Urology. 2007; 70(2): 309–314.
  149. Menon M, Kaul S, Bhandari A, et al. 999: Prospective Non-Randomized Comparison of Standard Nerve Sparing and the "Veil of Aphrodite": Analysis of Post Operative Potency Using the International Index of Erectile Function - 5 Questionnaire. J Urol. 2005; 173(4S): 270–275.
  150. Tewari A, Jhaveri J, Rao S, et al. Total reconstruction of the vesico-urethral junction. BJU Int. 2008; 101(7): 871–877.
  151. Bollens R, Roumeguere T, Schulman C, et al. Quality of Life after Radical Prostatectomy: How to Preserve Potency? Eur Urol Supl. 2005; 4(4): 2–7.
  152. Padma-Nathan H, McCullough AR, Levine LA, et al. Study Group. Randomized, double-blind, placebo-controlled study of postoperative nightly sildenafil citrate for the prevention of erectile dysfunction after bilateral nerve-sparing radical prostatectomy. Int J Impot Res. 2008; 20(5): 479–486.
  153. Montorsi F, Adaikan G, Becher E, et al. Summary of the recommendations on sexual dysfunctions in men. J Sex Med. 2010; 7(11): 3572–3588.
  154. Gontero P, Marra G, Alessio P, et al. Collaborators. Salvage Radical Prostatectomy for Recurrent Prostate Cancer: Morbidity and Functional Outcomes from a Large Multicenter Series of Open versus Robotic Approaches. J Urol. 2019; 202(4): 725–731.
  155. Chade DC, Eastham J, Graefen M, et al. Cancer control and functional outcomes of salvage radical prostatectomy for radiation-recurrent prostate cancer: a systematic review of the literature. Eur Urol. 2012; 61(5): 961–971.
  156. Marra G, Karnes RJ, Calleris G, et al. Oncological outcomes of salvage radical prostatectomy for recurrent prostate cancer in the contemporary era: A multicenter retrospective study. Urol Oncol. 2021; 39(5): 296.e21–296.e29.
  157. Chade D, Shariat S, Cronin A, et al. Salvage Radical Prostatectomy for Radiation-recurrent Prostate Cancer: A Multi-institutional Collaboration. Eur Urol. 2011; 60(2): 205–210.
  158. Mandel P, Steuber T, Ahyai S, et al. Salvage radical prostatectomy for recurrent prostate cancer: verification of European Association of Urology guideline criteria. BJU Int. 2016; 117(1): 55–61.
  159. Albertsen PC. Observational studies and the natural history of screen-detected prostate cancer. Curr Opin Urol. 2015; 25(3): 232–237.
  160. Bokhorst LP, Valdagni R, Rannikko A, et al. PRIAS study group. A Decade of Active Surveillance in the PRIAS Study: An Update and Evaluation of the Criteria Used to Recommend a Switch to Active Treatment. Eur Urol. 2016; 70(6): 954–960.
  161. Klotz L, Vesprini D, Sethukavalan P, et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol. 2015; 33(3): 272–277.
  162. Tosoian JJ, Sundi D, Trock BJ, et al. Intermediate and Longer-Term Outcomes From a Prospective Active-Surveillance Program for Favorable-Risk Prostate Cancer. J Clin Oncol. 2015; 33(30): 3379–3385.
  163. Bill-Axelson A, Holmberg L, Garmo H, et al. Radical Prostatectomy or Watchful Waiting in Prostate Cancer — 29-Year Follow-up. N Engl J Med. 2018; 379(24): 2319–2329.
  164. Wilt TJ, Vo TN, Langsetmo L, et al. Radical Prostatectomy or Observation for Clinically Localized Prostate Cancer: Extended Follow-up of the Prostate Cancer Intervention Versus Observation Trial (PIVOT). Eur Urol. 2020; 77(6): 713–724.
  165. EAU Guidelines. Edn. presented at the EAU Annual Congress Amsterdam, 2022.
  166. Mouraviev V, Mayes JM, Polascik TJ. Pathologic basis of focal therapy for early-stage prostate cancer. Nat Rev Urol. 2009; 6(4): 205–215.
  167. Cooperberg MR, Broering JM, Kantoff PW, et al. Contemporary trends in low risk prostate cancer: risk assessment and treatment. J Urol. 2007; 178(3 Pt 2): S14–S19.
  168. Polascik TJ, Mayes JM, Sun L, et al. Pathologic stage T2a and T2b prostate cancer in the recent prostate-specific antigen era: implications for unilateral ablative therapy. Prostate. 2008; 68(13): 1380–1386.
  169. Ahmed HU, Pendse D, Illing R, et al. Will focal therapy become a standard of care for men with localized prostate cancer? Nat Clin Pract Oncol. 2007; 4(11): 632–642.
  170. Eggener SE, Scardino PT, Carroll PR, et al. International Task Force on Prostate Cancer and the Focal Lesion Paradigm. Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J Urol. 2007; 178(6): 2260–2267.
  171. Crawford ED, Barqawi Al. Targeted focal therapy: a minimally invasive ablation technique for early prostate cancer. Oncology (Williston Park). 2007; 21(1): 27–32; discussion 33.
  172. Azzouzi AR, Vincendeau S, Barret E, et al. PCM301 Study Group. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol. 2017; 18(2): 181–191.
  173. Gill IS, Azzouzi AR, Emberton M, et al. PCM301 Study Group. Randomized Trial of Partial Gland Ablation with Vascular Targeted Phototherapy versus Active Surveillance for Low Risk Prostate Cancer: Extended Followup and Analyses of Effectiveness. J Urol. 2018; 200(4): 786–793.
  174. Ramsay CR, Adewuyi TE, Gray J, et al. Ablative therapy for people with localised prostate cancer: a systematic review and economic evaluation. Health Technol Assess. 2015; 19(49): 1–490.
  175. Valerio M, Cerantola Y, Eggener SE, et al. New and Established Technology in Focal Ablation of the Prostate: A Systematic Review. Eur Urol. 2017; 71(1): 17–34.
  176. Bates AS, Ayers J, Kostakopoulos N, et al. A Systematic Review of Focal Ablative Therapy for Clinically Localised Prostate Cancer in Comparison with Standard Management Options: Limitations of the Available Evidence and Recommendations for Clinical Practice and Further Research. Eur Urol Oncol. 2021; 4(3): 405–423.
  177. Rice SM, Oliffe JL, Kelly MT, et al. Depression and Prostate Cancer: Examining Comorbidity and Male-Specific Symptoms. Am J Mens Health. 2018; 12(6): 1864–1872.
  178. Oefelein M, Smith N, Carter M, et al. The Incidence of Prostate Cancer Progression with Undetectable Serum Prostate Specific Antigen in a Series of 394 Radical Prostatectomies. The Journal of Urology. 1995: 2128–2131.
  179. Horwitz EM, Thames HD, Kuban DA, et al. Definitions of biochemical failure that best predict clinical failure in patients with prostate cancer treated with external beam radiation alone: a multi-institutional pooled analysis. J Urol. 2005; 173(3): 797–802.
  180. Van den Broeck T, van den Bergh RCN, Arfi N, et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur Urol. 2019; 75(6): 967–987.
  181. Chaplin BJ, Wildhagen MF, Schroder FH, et al. Digital rectal examination is no longer necessary in the routine follow-up of men with undetectable prostate specific antigen after radical prostatectomy: the implications for follow-up. Eur Urol. 2005; 48(6): 906–910.
  182. Doneux A, Parker CC, Norman A, et al. The utility of digital rectal examination after radical radiotherapy for prostate cancer. Clin Oncol (R Coll Radiol). 2005; 17(3): 172–173.
  183. Stamey TA, Kabalin JN, McNeal JE, et al. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. J Urol. 1989; 141(5): 1076–1083.
  184. Hamdy F, Donovan J, Lane J, et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med. 2016; 375(15): 1415–1424.
  185. Jackson WC, Suresh K, Tumati V, et al. Impact of Biochemical Failure After Salvage Radiation Therapy on Prostate Cancer-specific Mortality: Competition Between Age and Time to Biochemical Failure. Eur Urol Oncol. 2018; 1(4): 276–282.
  186. Shen S, Lepor H, Yaffee R, et al. Ultrasensitive serum prostate specific antigen nadir accurately predicts the risk of early relapse after radical prostatectomy. J Urol. 2005; 173(3): 777–780.
  187. Seikkula H, Syvänen KT, Kurki S, et al. Role of ultrasensitive prostate-specific antigen in the follow-up of prostate cancer after radical prostatectomy. Urol Oncol. 2015; 33(1): 16.e1–16.e7.
  188. Lonergan PE, Cowan JE, Washington SL, et al. Natural history of an immediately detectable PSA following radical prostatectomy in a contemporary cohort. Prostate. 2021; 81(13): 1009–1017.
  189. Wilt TJ, Jones KM, Barry MJ, et al. Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N Engl J Med. 2017; 377(2): 132–142.
  190. Beesley LJ, Morgan TM, Spratt DE, et al. Individual and Population Comparisons of Surgery and Radiotherapy Outcomes in Prostate Cancer Using Bayesian Multistate Models. JAMA Netw Open. 2019; 2(2): e187765.
  191. Marshall CH, Chen Y, Kuo C, et al. Timing of Androgen Deprivation Treatment for Men with Biochemical Recurrent Prostate Cancer in the Context of Novel Therapies. J Urol. 2021; 206(3): 623–629.
  192. Loblaw A, Souter LH, Canil C, et al. Follow-up Care for Survivors of Prostate Cancer - Clinical Management: a Program in Evidence-Based Care Systematic Review and Clinical Practice Guideline. Clin Oncol (R Coll Radiol). 2017; 29(11): 711–717.
  193. Rouleau M, Lemire F, Déry M, et al. Discordance between testosterone measurement methods in castrated prostate cancer patients. Endocr Connect. 2019; 8(2): 132–140.
  194. Morote J, Comas I, Planas J, et al. Serum Testosterone Levels in Prostate Cancer Patients Undergoing Luteinizing Hormone-Releasing Hormone Agonist Therapy. Clin Genitourin Cancer. 2018; 16(2): e491–e496.
  195. Beer TM, Tangen CM, Bland LB, et al. Southwest Oncology Group Study. The prognostic value of hemoglobin change after initiating androgen-deprivation therapy for newly diagnosed metastatic prostate cancer: A multivariate analysis of Southwest Oncology Group Study 8894. Cancer. 2006; 107(3): 489–496.
  196. Iacovelli R, Ciccarese C, Bria E, et al. The Cardiovascular Toxicity of Abiraterone and Enzalutamide in Prostate Cancer. Clin Genitourin Cancer. 2018; 16(3): e645–e653.
  197. Conde FA, Aronson WJ. Risk factors for male osteoporosis. Urol Oncol. 2003; 21(5): 380–383.
  198. Higano CS. Bone loss and the evolving role of bisphosphonate therapy in prostate cancer. Urol Oncol. 2003; 21(5): 392–398.
  199. Sharma A, Garg G, Sadasukhi N, et al. A prospective longitudinal study to evaluate bone health, implication of FRAX tool and impact on quality of life (FACT-P) in advanced prostate cancer patients. Am J Clin Exp Urol. 2021; 9(3): 211–220.
  200. Edmunds K, Tuffaha H, Scuffham P, et al. The role of exercise in the management of adverse effects of androgen deprivation therapy for prostate cancer: a rapid review. Support Care Cancer. 2020; 28(12): 5661–5671.
  201. Thomas HR, Chen MH, D'Amico AV, et al. Association Between Androgen Deprivation Therapy and Patient-reported Depression in Men With Recurrent Prostate Cancer. Clin Genitourin Cancer. 2018; 16(4): 313–317.
  202. Gonzalez BD, Jim HSL, Booth-Jones M, et al. Course and Predictors of Cognitive Function in Patients With Prostate Cancer Receiving Androgen-Deprivation Therapy: A Controlled Comparison. J Clin Oncol. 2015; 33(18): 2021–2027.
  203. Pasalic D, Kuban DA, Allen PK, et al. Dose Escalation for Prostate Adenocarcinoma: A Long-Term Update on the Outcomes of a Phase 3, Single Institution Randomized Clinical Trial. Int J Radiat Oncol Biol Phys. 2019; 104(4): 790–797.
  204. Zietman AL, Bae K, Slater JD, et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95-09. J Clin Oncol. 2010; 28(7): 1106–1111.
  205. Heemsbergen WD, Al-Mamgani A, Slot A, et al. Long-term results of the Dutch randomized prostate cancer trial: impact of dose-escalation on local, biochemical, clinical failure, and survival. Radiother Oncol. 2014; 110(1): 104–109.
  206. Dearnaley DP, Jovic G, Syndikus I, et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2014; 15(4): 464–473.
  207. Michalski JM, Moughan J, Purdy J, et al. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol. 2018; 4(6): e180039.
  208. Walz J. Re: Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients with Localized Prostate Cancer: Results from the FLAME Randomized Phase III Trial. Eur Urol. 2022; 81(5): 544–545.
  209. Zaorsky NG, Harrison AS, Trabulsi EJ, et al. Evolution of advanced technologies in prostate cancer radiotherapy. Nat Rev Urol. 2013; 10(10): 565–579.
  210. Lagendijk JJW, Raaymakers BW, van Vulpen M. The magnetic resonance imaging-linac system. Semin Radiat Oncol. 2014; 24(3): 207–209.
  211. Dearnaley D, Syndikus I, Mossop H, et al. CHHiP Investigators. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016; 17(8): 1047–1060.
  212. de Vries KC, Wortel RC, Oomen-de Hoop E, et al. Hyprofractionated Versus Conventionally Fractionated Radiation Therapy for Patients with Intermediate- or High-Risk, Localized, Prostate Cancer: 7-Year Outcomes From the Randomized, Multicenter, Open-Label, Phase 3 HYPRO Trial. Int J Radiat Oncol Biol Phys. 2020; 106(1): 108–115.
  213. Catton CN, Lukka H, Gu CS, et al. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J Clin Oncol. 2017; 35(17): 1884–1890.
  214. Lee WR, Dignam JJ, Amin MB, et al. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. J Clin Oncol. 2016; 34(20): 2325–2332.
  215. Madsen BL, Hsi RA, Pham HT, et al. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys. 2007; 67(4): 1099–1105.
  216. King CR, Brooks JD, Gill H, et al. Long-term outcomes from a prospective trial of stereotactic body radiothepary for low-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2012; 82: 877–882.
  217. King CR, Collins S, Fuller D, et al. Health-related quality of life after stereotactic body radiation therapy for localized prostate cancer: results from a multi-institutional consortium of prospective trials. Int J Radiat Oncol Biol Phys. 2013; 87(5): 939–945.
  218. Fransson P, Nilsson P, Gunnlaugsson A, et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet. 2019; 394(10196): 385–395.
  219. Tree AC, Ostler P, van der Voet H, et al. PACE Trial Investigators, PACE Trial Investigators. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol. 2019; 20(11): 1531–1543.
  220. Takagi M, Demizu Y, Fujii O, et al. Proton Therapy for Localized Prostate Cancer: Long-Term Results From a Single-Center Experience. Int J Radiat Oncol Biol Phys. 2021; 109(4): 964–974.
  221. Bryant CM, Hoppe BS. Promising long-term results with proton therapy for localized prostate cancer. Nat Rev Urol. 2021; 18(3): 137–138.
  222. Royce TJ, Efstathiou JA. Proton therapy for prostate cancer: A review of the rationale, evidence, and current state. Urol Oncol. 2019; 37(9): 628–636.
  223. Hamdy FC, Donovan JL, Lane JA, et al. ProtecT Study Group. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med. 2016; 375(15): 1415–1424.
  224. Stock RG, Cahlon O, Cesaretti JA, et al. Combined modality treatment in the management of high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2004; 59(5): 1352–1359.
  225. Donovan JL, Hamdy FC, Lane JA, et al. ProtecT Study Group*. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med. 2016; 375(15): 1425–1437.
  226. Attard G, Murphy L, Clarke NW, et al. Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol. Lancet. 2022; 399(10323): 447–460.
  227. Bolla M. [Combination of radiotherapy and hormonotherapy in locally advanced cancers of the prostate]. Cancer Radiother. 1997; 1(5): 439–442.
  228. Lawton CA, Bae K, Pilepich M, et al. Long-term treatment sequelae after external beam irradiation with or without hormonal manipulation for adenocarcinoma of the prostate: analysis of radiation therapy oncology group studies 85-31, 86-10, and 92-02. Int J Radiat Oncol Biol Phys. 2008; 70(2): 437–441.
  229. Ma TM, Sun Y, Malone S, et al. Sequencing of Androgen-Deprivation Therapy of Short Duration With Radiotherapy for Nonmetastatic Prostate Cancer (SANDSTORM): A Pooled Analysis of 12 Randomized Trials. J Clin Oncol. 2022.
  230. Zapatero A, Guerrero A, Maldonado X, et al. High-dose radiotherapy and risk-adapted androgen deprivation in localised prostate cancer (DART 01/05): 10-year results of a phase 3 randomised, controlled trial. Lancet Oncol. 2022; 23(5): 671–681.
  231. Oh J, Tyldesley S, Pai HH, et al. An Updated Analysis of Survival Endpoints for ASCENDE-RT, a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer. Int J Radiat Oncol Biol Phys. 2020; 108(3): S62.
  232. Kishan A, Cook R, Ciezki J, et al. Radical Prostatectomy, External Beam Radiotherapy, or External Beam Radiotherapy With Brachytherapy Boost and Disease Progression and Mortality in Patients With Gleason Score 9-10 Prostate Cancer. JAMA. 2018; 319(9): 896.
  233. Chun FKH, Graefen M, Zacharias M, et al. Anatomic radical retropubic prostatectomy-long-term recurrence-free survival rates for localized prostate cancer. World J Urol. 2006; 24(3): 273–280.
  234. Bianco FJ, Scardino PT, Eastham JA. Radical prostatectomy: long-term cancer control and recovery of sexual and urinary function ("trifecta"). Urology. 2005; 66(5 Suppl): 83–94.
  235. Stephenson AJ, Scardino PT, Eastham JA, et al. Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Natl Cancer Inst. 2006; 98(10): 715–717.
  236. Pound CR, Partin AW, Eisenberger MA, et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999; 281(17): 1591–1597.
  237. Thompson IM, Tangen CM, Paradelo J, et al. Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA. 2006; 296(19): 2329–2335.
  238. Rogers CG, Khan MA, Craig Miller M, et al. Natural history of disease progression in patients who fail to achieve an undetectable prostate-specific antigen level after undergoing radical prostatectomy. Cancer. 2004; 101(11): 2549–2556.
  239. Fossati N, Robesti D, Karnes RJ, et al. Impact of Early Salvage Radiation Therapy in Patients with Persistently Elevated or Rising Prostate-specific Antigen After Radical Prostatectomy. Eur Urol. 2018; 73(3): 436–444.
  240. Fossati N, Karnes RJ, Cozzarini C, et al. Assessing the Optimal Timing for Early Salvage Radiation Therapy in Patients with Prostate-specific Antigen Rise After Radical Prostatectomy. Eur Urol. 2016; 69(4): 728–733.
  241. www.nccn.org.
  242. Farolfi A, Ceci F, Castellucci P, et al. Ga-PSMA-11 PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy and PSA <0.5 ng/ml. Efficacy and impact on treatment strategy. Eur J Nucl Med Mol Imaging. 2019; 46(1): 11–19.
  243. www.eua.org.
  244. Fendler WP, Calais J, Eiber M, et al. Assessment of 68 Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer. JAMA Oncol. 2019; 5: 856.
  245. Morris MJ, Rowe SP, Gorin MA, et al. Diagnostic performance of 18 F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR Phase 3, multicenter study. Clin Cancer Res. 2021.
  246. Ceci F, Bianchi L, Borghesi M, et al. Prediction nomogram for Ga-PSMA-11 PET/CT in different clinical settings of PSA failure after radical treatment for prostate cancer. Eur J Nucl Med Mol Imaging. 2020; 47(1): 136–146.
  247. Evangelista L, Zattoni F, Cassarino G, et al. PET/MRI in prostate cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2021; 48(3): 859–873.
  248. Preisser F, Chun FKH, Pompe RS, et al. Persistent Prostate-Specific Antigen After Radical Prostatectomy and Its Impact on Oncologic Outcomes. Eur Urol. 2019; 76(1): 106–114.
  249. Tendulkar R, Agrawal S, Gao T, et al. Contemporary Update of a Multi-Institutional Predictive Nomogram for Salvage Radiotherapy After Radical Prostatectomy. J Clin Oncol. 2016; 34(30): 3648–3654.
  250. Bartkowiak D, Bottke D, Thamm R, et al. The PSA-response to salvage radiotherapy after radical prostatectomy correlates with freedom from progression and overall survival. Radiother Oncol. 2016; 118(1): 131–135.
  251. Bartkowiak D, Thamm R, Siegmann A, et al. Lead-time bias does not falsify the efficacy of early salvage radiotherapy for recurrent prostate cancer. Radiother Oncol. 2021; 154: 255–259.
  252. Tilki D, Chen MH, Wu J, et al. Prostate-Specific Antigen Level at the Time of Salvage Therapy After Radical Prostatectomy for Prostate Cancer and the Risk of Death. J Clin Oncol. 2023.
  253. King CR. The timing of salvage radiotherapy after radical prostatectomy: a systematic review. Int J Radiat Oncol Biol Phys. 2012; 84(1): 104–111.
  254. Ghadjar P, Hayoz S, Bernhard J, et al. Dose-intensified Versus Conventional-dose Salvage Radiotherapy for Biochemically Recurrent Prostate Cancer After Prostatectomy: The SAKK 09/10 Randomized Phase 3 Trial. Eur Urol. 2021; 80(3): 306–315.
  255. Parker CC, Clarke NW, Cook AD, et al. Timing of radiotherapy after radical prostatectomy (RADICALS-RT): a randomised, controlled phase 3 trial. Lancet. 2020; 396(10260): 1413–1421.
  256. Kneebone A, Fraser-Browne C, Duchesne GM, et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. Lancet Oncol. 2020; 21(10): 1331–1340.
  257. Sargos P, Chabaud S, Latorzeff I, et al. Adjuvant radiotherapy versus early salvage radiotherapy plus short-term androgen deprivation therapy in men with localised prostate cancer after radical prostatectomy (GETUG-AFU 17): a randomised, phase 3 trial. Lancet Oncol. 2020; 21(10): 1341–1352.
  258. Vale CL, Fisher D, Kneebone A, et al. ARTISTIC Meta-analysis Group. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. Lancet. 2020; 396(10260): 1422–1431.
  259. Shipley WU, Seiferheld W, Lukka HR, et al. NRG Oncology RTOG. Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer. N Engl J Med. 2017; 376(5): 417–428.
  260. Fossati N, Robesti D, Karnes RJ, et al. Assessing the Role and Optimal Duration of Hormonal Treatment in Association with Salvage Radiation Therapy After Radical Prostatectomy: Results from a Multi-Institutional Study. Eur Urol. 2019; 76(4): 443–449.
  261. Carrie C, Magné N, Burban-Provost P, et al. Short-term androgen deprivation therapy combined with radiotherapy as salvage treatment after radical prostatectomy for prostate cancer (GETUG-AFU 16): a 112-month follow-up of a phase 3, randomised trial. Lancet Oncol. 2019; 20(12): 1740–1749.
  262. Pollack A, Karrison TG, Balogh AG, et al. Short Term Androgen Deprivation Therapy Without or With Pelvic Lymph Node Treatment Added to Prostate Bed Only Salvage Radiotherapy: The NRG Oncology/RTOG 0534 SPPORT Trial. Int J Radiat Oncol Biol Phys. 2018; 102(5): 1605.
  263. Spratt DE, Dess RT, Feng FY, et al. A Systematic Review and Framework for the Use of Hormone Therapy with Salvage Radiation Therapy for Recurrent Prostate Cancer. Eur Urol. 2018; 73(2): 156–165.
  264. Gonzalez-Moya A, Supiot S, Seegers V, et al. Mapping of Recurrence Sites Following Adjuvant or Salvage Radiotherapy for Prostate Cancer Patients. Front Oncol. 2021; 11: 787347.
  265. Foster CC, Weichselbaum RR, Pitroda SP. Oligometastatic prostate cancer: Reality or figment of imagination? Cancer. 2019; 125(3): 340–352.
  266. Kyriakopoulos CE, Chen YH, Carducci MA, et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J Clin Oncol. 2018; 36(11): 1080–1087.
  267. Lievens Y, Guckenberger M, Gomez D, et al. Defining oligometastatic disease from a radiation oncology perspective: An ESTRO-ASTRO consensus document. Radiother Oncol. 2020; 148: 157–166.
  268. Fossati N, Trinh QD, Sammon J, et al. Identifying optimal candidates for local treatment of the primary tumor among patients diagnosed with metastatic prostate cancer: a SEER-based study. Eur Urol. 2015; 67(1): 3–6.
  269. Rusthoven CG, Jones BL, Flaig TW, et al. Improved Survival With Prostate Radiation in Addition to Androgen Deprivation Therapy for Men With Newly Diagnosed Metastatic Prostate Cancer. J Clin Oncol. 2016; 34(24): 2835–2842.
  270. Parker C, James N, Brawley C, et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet. 2018; 392(10162): 2353–2366.
  271. Ali A, Hoyle A, Haran ÁM, et al. Association of Bone Metastatic Burden With Survival Benefit From Prostate Radiotherapy in Patients With Newly Diagnosed Metastatic Prostate Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2021; 7(4): 555–563.
  272. Boevé L, Hulshof M, Vis A, et al. Effect on Survival of Androgen Deprivation Therapy Alone Compared to Androgen Deprivation Therapy Combined with Concurrent Radiation Therapy to the Prostate in Patients with Primary Bone Metastatic Prostate Cancer in a Prospective Randomised Clinical Trial: Data from the HORRAD Trial. Eur Urol. 2019; 75(3): 410–418.
  273. Burdett S, Boevé LM, Ingleby FC, et al. STOPCAP M1 Radiotherapy Collaborators. Prostate Radiotherapy for Metastatic Hormone-sensitive Prostate Cancer: A STOPCAP Systematic Review and Meta-analysis. Eur Urol. 2019; 76(1): 115–124.
  274. Reverberi C, Massaro M, Osti MF, et al. Local and metastatic curative radiotherapy in patients with de novo oligometastatic prostate cancer. Sci Rep. 2020; 10(1): 17471.
  275. Deantoni CL, Fodor A, Cozzarini C, et al. Prostate cancer with low burden skeletal disease at diagnosis: outcome of concomitant radiotherapy on primary tumor and metastases. Br J Radiol. 2020; 93(1108): 20190353.
  276. Tang C, et al. Abstract LBA 05. Presented at: American Society for Radiation Oncology Annual Meeting San Antonio USA, Oct. 23-26, 2022.
  277. Ost P, Jereczek-Fossa BA, As NV, et al. Progression-free Survival Following Stereotactic Body Radiotherapy for Oligometastatic Prostate Cancer Treatment-naive Recurrence: A Multi-institutional Analysis. Eur Urol. 2016; 69(1): 9–12.
  278. Spaas M, Sundahl N, Hulstaert E, et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J Clin Oncol. 2018; 36(5): 446–453.
  279. Palma DA, Olson R, Harrow S, et al. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial. J Clin Oncol. 2020; 38(25): 2830–2838.
  280. Phillips R, Shi WY, Deek M, et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol. 2020; 6(5): 650–659.
  281. Onal C, Kose F, Ozyigit G, et al. Stereotactic body radiotherapy for oligoprogressive lesions in metastatic castration-resistant prostate cancer patients during abiraterone/enzalutamide treatment. Prostate. 2021; 81(9): 543–552.
  282. Pezzulla D, Macchia G, Cilla S, et al. Stereotactic body radiotherapy to lymph nodes in oligoprogressive castration-resistant prostate cancer patients: a post hoc analysis from two phase I clinical trials. Clin Exp Metastasis. 2021; 38(6): 519–526.
  283. Cameron MG, Kersten C, Guren MG, et al. Palliative pelvic radiotherapy of symptomatic incurable prostate cancer - a systematic review. Radiother Oncol. 2014; 110(1): 55–60.
  284. Hartsell WF, Scott CB, Bruner DW, et al. Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst. 2005; 97(11): 798–804.
  285. Chow E, van der Linden YM, Roos D, et al. Single versus multiple fractions of repeat radiation for painful bone metastases: a randomised, controlled, non-inferiority trial. Lancet Oncol. 2014; 15(2): 164–171.
  286. Chow R, Hoskin P, Schild S, et al. Single vs multiple fraction palliative radiation therapy for bone metastases: Cumulative meta-analysis. Radiother Oncol. 2019; 141: 56–61.
  287. Nguyen QN, Chun SG, Chow E, et al. Single-Fraction Stereotactic vs Conventional Multifraction Radiotherapy for Pain Relief in Patients With Predominantly Nonspine Bone Metastases: A Randomized Phase 2 Trial. JAMA Oncol. 2019; 5(6): 872–878.
  288. Würnschimmel C, Wenzel M, Wang N, et al. Radical prostatectomy for localized prostate cancer: 20-year oncological outcomes from a German high-volume center. Urol Oncol. 2021; 39(12): 830.e17–830.e26.
  289. Kumar S, Shelley M, Harrison C, et al. Neo-adjuvant and adjuvant hormone therapy for localised and locally advanced prostate cancer. Cochrane Database Syst Rev. 2006(4): CD006019.
  290. Efstathiou E, Davis JW, Pisters L, et al. Clinical and Biological Characterisation of Localised High-risk Prostate Cancer: Results of a Randomised Preoperative Study of a Luteinising Hormone-releasing Hormone Agonist with or Without Abiraterone Acetate plus Prednisone. Eur Urol. 2019; 76(4): 418–424.
  291. Eastham JA, Heller G, Halabi S, et al. Cancer and Leukemia Group B 90203 (Alliance): Radical Prostatectomy With or Without Neoadjuvant Chemohormonal Therapy in Localized, High-Risk Prostate Cancer. J Clin Oncol. 2020; 38(26): 3042–3050.
  292. Iversen P, McLeod DG, See WA, et al. Casodex Early Prostate Cancer Trialists' Group. Antiandrogen monotherapy in patients with localized or locally advanced prostate cancer: final results from the bicalutamide Early Prostate Cancer programme at a median follow-up of 9.7 years. BJU Int. 2010; 105(8): 1074–1081.
  293. Djavan B, Moul J, Zlotta A, et al. PSA Progression Following Radical Prostatectomy and Radiation Therapy: New Standards in the New Millenium. Eur Urol. 2003; 43(1): 12–27.
  294. Kupelian P, Katcher J, Levin H, et al. Correlation of clinical and pathologic factors with rising prostate-specific antigen profiles after radical prostatectomy alone for clinically localized prostate cancer. Urology. 1996; 48(2): 249–260.
  295. Shahabi A, Satkunasivam R, Gill IS, et al. Predictors of time to biochemical recurrence in a radical prostatectomy cohort within the PSA-era. Can Urol Assoc J. 2016; 10(1-2): E17–E22.
  296. Morgan PB, Hanlon AL, Horwitz EM, et al. Timing of biochemical failure and distant metastatic disease for low-, intermediate-, and high-risk prostate cancer after radiotherapy. Cancer. 2007; 110(1): 68–80.
  297. Antonarakis ES, Feng Z, Trock BJ, et al. The natural history of metastatic progression in men with prostate-specific antigen recurrence after radical prostatectomy: long-term follow-up. BJU Int. 2012; 109(1): 32–39.
  298. Hu JR, Duncan MS, Morgans AK, et al. Cardiovascular Effects of Androgen Deprivation Therapy in Prostate Cancer: Contemporary Meta-Analyses. Arterioscler Thromb Vasc Biol. 2020; 40(3): e55–e64.
  299. Boland J, Choi W, Lee M, et al. Cardiovascular Toxicity of Androgen Deprivation Therapy. Curr Cardiol Rep. 2021; 23(8): 109.
  300. Garcia-Albeniz X, Chan JM, Paciorek A, et al. Immediate versus deferred initiation of androgen deprivation therapy in prostate cancer patients with PSA-only relapse. An observational follow-up study. Eur J Cancer. 2015; 51(7): 817–824.
  301. Bosco C, Bosnyak Z, Malmberg A, et al. Quantifying observational evidence for risk of fatal and nonfatal cardiovascular disease following androgen deprivation therapy for prostate cancer: a meta-analysis. Eur Urol. 2015; 68(3): 386–396.
  302. Smith MR, Lee WC, Brandman J, et al. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J Clin Oncol. 2005; 23(31): 7897–7903.
  303. Sweeney C, Chen YH, Carducci M, et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N Engl J Med. 2015; 373(8): 737–746.
  304. Clarke NW, Ali A, Ingleby FC, et al. Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: long-term survival results from the STAMPEDE trial. Ann Oncol. 2019; 30(12): 1992–2003.
  305. Fizazi K, Tran N, Fein L, et al. LATITUDE Investigators. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med. 2017; 377(4): 352–360.
  306. James ND, de Bono JS, Spears MR, et al. STAMPEDE Investigators. Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N Engl J Med. 2017; 377(4): 338–351.
  307. Sydes MR, Spears MR, Mason MD, et al. STAMPEDE Investigators. Adding abiraterone or docetaxel to long-term hormone therapy for prostate cancer: directly randomised data from the STAMPEDE multi-arm, multi-stage platform protocol. Ann Oncol. 2018; 29(5): 1235–1248.
  308. Davis ID, Martin AJ, Stockler MR, et al. ENZAMET Trial Investigators and the Australian and New Zealand Urogenital and Prostate Cancer Trials Group. Enzalutamide with Standard First-Line Therapy in Metastatic Prostate Cancer. N Engl J Med. 2019; 381(2): 121–131.
  309. Armstrong A, Azad A, Iguchi T, et al. Improved Survival With Enzalutamide in Patients With Metastatic Hormone-Sensitive Prostate Cancer. J Clin Oncol. 2022; 40(15): 1616–1622.
  310. Smith MR, Saad F, Chowdhury S, et al. SPARTAN Investigators. Apalutamide Treatment and Metastasis-free Survival in Prostate Cancer. N Engl J Med. 2018; 378(15): 1408–1418.
  311. Fizazi K, Galceran JC, Foulon S, et al. LBA5 A phase III trial with a 2x2 factorial design in men with de novo metastatic castration-sensitive prostate cancer: Overall survival with abiraterone acetate plus prednisone in PEACE-1. Ann Oncol. 2021; 32: S1299.
  312. Fizazi K, Foulon S, Carles J, et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design. Lancet. 2022; 399(10336): 1695–1707.
  313. Smith MR, Hussain M, Saad F, et al. ARASENS Trial Investigators. Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer. N Engl J Med. 2022; 386(12): 1132–1142.
  314. Scher HI, Morris MJ, Stadler WM, et al. Prostate Cancer Clinical Trials Working Group 3. Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol. 2016; 34(12): 1402–1418.
  315. Pienta KJ, Bradley D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res. 2006; 12(6): 1665–1671.
  316. Crawford ED, Stone NN, Yu EY, et al. Prostate Cancer Radiographic Assessments for Detection of Advanced Recurrence (RADAR) Group. Challenges and recommendations for early identification of metastatic disease in prostate cancer. Urology. 2014; 83(3): 664–669.
  317. Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract. 2011; 65(11): 1180–1192.
  318. Smith MR, Saad F, Oudard S, et al. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: exploratory analyses by baseline prostate-specific antigen doubling time. J Clin Oncol. 2013; 31(30): 3800–3806.
  319. Howard LE, Moreira DM, De Hoedt A, et al. Thresholds for PSA doubling time in men with non-metastatic castration-resistant prostate cancer. BJU Int. 2017; 120(5B): E80–E86.
  320. Fendler WP, Weber M, Iravani A, et al. Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography in Men with Nonmetastatic Castration-Resistant Prostate Cancer. Clin Cancer Res. 2019; 25(24): 7448–7454.
  321. Smith MR, Saad F, Chowdhury S, et al. Apalutamide and Overall Survival in Prostate Cancer. Eur Urol. 2021; 79(1): 150–158.
  322. Fizazi K, Shore N, Tammela TL, et al. ARAMIS Investigators, ARAMIS Investigators. Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med. 2019; 380(13): 1235–1246.
  323. Sternberg CN, Fizazi K, Saad F, et al. PROSPER Investigators. Enzalutamide and Survival in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med. 2020; 382(23): 2197–2206.
  324. Penson DF, Armstrong AJ, Concepcion R, et al. Enzalutamide Versus Bicalutamide in Castration-Resistant Prostate Cancer: The STRIVE Trial. J Clin Oncol. 2016; 34(18): 2098–2106.
  325. Płużański A. Kryteria oceny odpowiedzi na leczenie RECIST 1.1. Nowotwory. Journal of Oncology. 2014; 64(4): 331–335.
  326. https://www.calyx.ai/library/assessing-prostate-cancer-on-imagingin- clinical-trials/.
  327. EAU Guidelines – Uroweb – European Association of Urology. https:// uroweb.org/guidelines.
  328. Thuret R, Massard C, Gross-Goupil M, et al. The postchemotherapy PSA surge syndrome. Ann Oncol. 2008; 19(7): 1308–1311.
  329. Tannock IF, Osoba D, Stockler MR, et al. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol. 1996; 14(6): 1756–1764.
  330. Tannock IF, de Wit R, Berry WR, et al. TAX 327 Investigators. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004; 351(15): 1502–1512.
  331. Berthold DR, Pond GR, Soban F, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol. 2008; 26(2): 242–245.
  332. Petrylak DP, Tangen CM, Hussain MHA, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004; 351(15): 1513–1520.
  333. Italiano A, Ortholan C, Oudard S, et al. Docetaxel-based chemotherapy in elderly patients (age 75 and older) with castration-resistant prostate cancer. Eur Urol. 2009; 55(6): 1368–1375.
  334. Kellokumpu-Lehtinen PL, Harmenberg U, Joensuu T, et al. 2-weekly versus 3-weekly docetaxel to treat castration-resistant advanced prostate cancer: a randomised, phase 3 trial. Lancet Oncol. 2013; 14(2): 117–124.
  335. Oudard S, Fizazi K, Sengeløv L, et al. Cabazitaxel Versus Docetaxel As First-Line Therapy for Patients With Metastatic Castration-Resistant Prostate Cancer: A Randomized Phase III Trial-FIRSTANA. J Clin Oncol. 2017; 35(28): 3189–3197.
  336. Annala M, Fu S, Bacon J, et al. Cabazitaxel versus abiraterone or enzalutamide in poor prognosis metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase II trial. Ann Oncol. 2021; 32(7): 896–905.
  337. Shore N, Chowdhury S, Villers A, et al. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol. 2016; 17(2): 153–163.
  338. George D, Tagawa S, Lechpammer S, et al. Overall survival (OS) in men with chemotherapy-naïve metastatic castration-resistant prostate cancer (mCRPC) receiving bicalutamide (BIC) followed by enzalutamide (ENZA) or abiraterone (ABI). J Clin Oncol. 2020; 38(6_suppl): 40–40.
  339. Ryan C, Smith M, Fizazi K, et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2015; 16(2): 152–160.
  340. El-Amm J, Nassabein R, Aragon-Ching JB. Impact of abiraterone on patient-related outcomes in metastatic castration-resistant prostate cancer: current perspectives. Cancer Manag Res. 2017; 9: 299–306.
  341. Beer TM, Armstrong AJ, Rathkopf D, et al. Enzalutamide in Men with Chemotherapy-naïve Metastatic Castration-resistant Prostate Cancer: Extended Analysis of the Phase 3 PREVAIL Study. Eur Urol. 2017; 71(2): 151–154.
  342. Mori K, Miura N, Mostafaei H, et al. Sequential therapy of abiraterone and enzalutamide in castration-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2020; 23(4): 539–548.
  343. de Wit R, de Bono J, Sternberg CN, et al. CARD Investigators. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. N Engl J Med. 2019; 381(26): 2506–2518.
  344. Kantoff PW, Higano CS, Shore ND, et al. IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010; 363(5): 411–422.
  345. Powles T, Yuen KC, Gillessen S, et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial. Nat Med. 2022; 28(1): 144–153.
  346. Lavaud P, Gravis G, Foulon S, et al. Anticancer Activity and Tolerance of Treatments Received Beyond Progression in Men Treated Upfront with Androgen Deprivation Therapy With or Without Docetaxel for Metastatic Castration-naïve Prostate Cancer in the GETUG-AFU 15 Phase 3 Trial. Eur Urol. 2018; 73(5): 696–703.
  347. Fizazi K, Scher H, Molina A, et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012; 13(10): 983–992.
  348. Bono Jde, Logothetis C, Molina A, et al. Abiraterone and Increased Survival in Metastatic Prostate Cancer. N Engl J Med. 2011; 364(21): 1995–2005.
  349. Bono Jde, Oudard S, Ozguroglu M, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010; 376(9747): 1147–1154.
  350. Eisenberger M, Hardy-Bessard AC, Kim C, et al. Phase III Study Comparing a Reduced Dose of Cabazitaxel (20 mg/m2) and the Currently Approved Dose (25 mg/m2) in Postdocetaxel Patients With Metastatic Castration-Resistant Prostate Cancer—PROSELICA. J Clin Oncol. 2017; 35(28): 3198–3206.
  351. Hussain M, Mateo J, Fizazi K, et al. Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2020; 383(24): 2345–2357.
  352. Clarke NW, Armstrong AJ, Thiery-Vuillemin A, et al. Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer. NEJM Evidence. 2022; 1(9).
  353. Fizazi K, Piulats J, Reaume M, et al. Rucaparib or Physician's Choice in Metastatic Prostate Cancer. N Engl J Med. 2023; 388(8): 719–732.
  354. Parker C, Nilsson S, Heinrich D, et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N Engl J Med. 2013; 369(3): 213–223.
  355. McDermott R, Greene J, McCaffrey J, et al. Radium-223 in combination with enzalutamide in metastatic castration-resistant prostate cancer: a multi-centre, phase II open-label study. Ther Adv Med Oncol. 2021; 13: 175883592110426.
  356. Sartor O, Bono Jde, Chi K, et al. Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2021; 385(12): 1091–1103.
  357. Hofman M, Emmett L, Sandhu S, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021; 397(10276): 797–804.
  358. Aggarwal R, Huang J, Alumkal J, et al. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol. 2018; 36(24): 2492–2503.
  359. Spetsieris N, Boukovala M, Patsakis G, et al. Neuroendocrine and Aggressive-Variant Prostate Cancer. Cancers (Basel). 2020; 12(12): 3792.
  360. Lee JL, Ahn JH, Choi MK, et al. Gemcitabine–oxaliplatin plus prednisolone is active in patients with castration-resistant prostate cancer for whom docetaxel-based chemotherapy failed. Br J Cancer. 2014; 110(10): 2472–2478.
  361. Pu CL, Li JZ, Fan WL. Efficacy of docetaxel combined carboplatin for the treatment of patients with castration-resistant prostate cancer. Medicine (Baltimore). 2020; 99(21): e20297.
  362. Corn P, Heath E, Zurita A, et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1–2 trial. Lancet Oncol. 2019; 20(10): 1432–1443.
  363. Slootbeek P, Duizer M, Doelen M, et al. Impact of DNA damage repair defects and aggressive variant features on response to carboplatin‐based chemotherapy in metastatic castration‐resistant prostate cancer. Int J Cancer. 2020; 148(2): 385–395.
  364. Abida W, Cheng M, Armenia J, et al. Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncol. 2019; 5(4): 471–478.
  365. Beer T, Kwon E, Drake C, et al. Randomized, Double-Blind, Phase III Trial of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients With Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. J Clin Oncol. 2017; 35(1): 40–47.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest  VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl