Online first
Artykuł przeglądowy
Opublikowany online: 2024-06-10
Wyświetlenia strony 55
Wyświetlenia/pobrania artykułu 9
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Diagnostyka molekularna w raku jajnika i jej znaczenie w praktyce klinicznej

Paweł Blecharz1, Magdalena Stawicka-Niełacna2, Andrzej Marszałek34

Streszczenie

Najlepsze efekty leczenia chorych na nowo zdiagnozowanego zaawansowanego raka jajnika osiągane są w pierwszej linii leczenia. Jest to moment, kiedy można mówić o potencjalnej możliwości wyleczenia. 

Zgodnie z rekomendacjami, inhibitory polimerazy poli-ADP-rybozy (iPARP) powinny być stosowane w pierwszej linii leczenia ze względu na największą korzyść związaną z wydłużeniem mediany czasu do progresji (mPFS) i wpływem na całkowity czas przeżycia (OS). Efekty terapeutyczne osiągane w pierwszej linii są niemożliwe do uzyskania w leczeniu nawrotowej postaci choroby. 

Rozwój badań klinicznych i diagnostyki przyczynił się do zmiany sposobu myślenia dotyczącego doboru leczenia dla chorych na zaawansowanego raka jajnika, które dotychczas było oparte jedynie o wynik zabiegu operacyjnego. Wybór nowoczesnych terapii zawsze powinien być poparty wynikiem diagnostyki molekularnej wykonanej na początkowym etapie po diagnozie choroby. 

Aktualne wytyczne ESMO rekomendują wczesną diagnostykę BRCA oraz HRD i zalecają wybór terapii podtrzymującej w oparciu o wynik badania molekularnego.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Burger RA, Brady MF, Bookman MA, et al. Gynecologic Oncology Group. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011; 365(26): 2473–2483.
  2. Perren TJ, Swart AM, Pfisterer J, et al. ICON7 Investigators. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011; 365(26): 2484–2496.
  3. Gordon AN, Fleagle JT, Guthrie D, et al. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol. 2001; 19(14): 3312–3322.
  4. Vencken PM, Kriege M, Hoogwerf D, et al. Chemosensitivity and outcome of BRCA1- and BRCA2-associated ovarian cancer patients after first-line chemotherapy compared with sporadic ovarian cancer patients. Ann Oncol. 2011; 22(6): 1346–1352.
  5. Tan DSP, Rothermundt C, Thomas K, et al. "BRCAness" syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol. 2008; 26(34): 5530–5536.
  6. Cass I, Baldwin RL, Varkey T, et al. Improved survival in women with BRCA-associated ovarian carcinoma. Cancer. 2003; 97(9): 2187–2195.
  7. Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009; 361(2): 123–134.
  8. Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012; 366(15): 1382–1392.
  9. Mirza MR, Monk BJ, Herrstedt J, et al. ENGOT-OV16/NOVA Investigators. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N Engl J Med. 2016; 375(22): 2154–2164.
  10. Coleman RL, Oza AM, Lorusso D, et al. ARIEL3 investigators. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017; 390(10106): 1949–1961.
  11. Tomao F, Bardhi E, Di Pinto A, et al. Parp inhibitors as maintenance treatment in platinum sensitive recurrent ovarian cancer: An updated meta-analysis of randomized clinical trials according to BRCA mutational status. Cancer Treat Rev. 2019; 80: 101909.
  12. Monk BJ, Parkinson C, Lim MC, et al. A Randomized, Phase III Trial to Evaluate Rucaparib Monotherapy as Maintenance Treatment in Patients With Newly Diagnosed Ovarian Cancer (ATHENA-MONO/GOG-3020/ENGOT-ov45). J Clin Oncol. 2022; 40(34): 3952–3964.
  13. DiSilvestro P, Banerjee S, Colombo N, et al. SOLO1 Investigators. Overall Survival With Maintenance Olaparib at a 7-Year Follow-Up in Patients With Newly Diagnosed Advanced Ovarian Cancer and a BRCA Mutation: The SOLO1/GOG 3004 Trial. J Clin Oncol. 2023; 41(3): 609–617.
  14. González-Martín A, Pothuri B, Vergote I, et al. PRIMA/ENGOT-OV26/GOG-3012 Investigators. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Engl J Med. 2019; 381(25): 2391–2402.
  15. Ray-Coquard I, Leary A, Pignata S, et al. PAOLA-1/ENGOT-ov25 investigators. Olaparib plus bevacizumab first-line maintenance in ovarian cancer: final overall survival results from the PAOLA-1/ENGOT-ov25 trial. Ann Oncol. 2023; 34(8): 681–692.
  16. González-Martín A, Harter P, Leary A, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023; 34(10): 833–848.
  17. Programy lekowe, choroby onkologiczne. https://www.gov.pl/web/zdrowie/obwieszczenia-ministra-zdrowia-lista-lekow-refundowanych.
  18. Scully R, Panday A, Elango R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019; 20(11): 698–714.
  19. Blackford AN, Stucki M. How Cells Respond to DNA Breaks in Mitosis. Trends Biochem Sci. 2020; 45(4): 321–331.
  20. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009; 461(7267): 1071–1078.
  21. West SC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol. 2003; 4(6): 435–445.
  22. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010; 40(2): 179–204.
  23. Spies J, Polasek-Sedlackova H, Lukas J, et al. Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication. Genes (Basel). 2021; 12(12).
  24. Heyer WD, Ehmsen KT, Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010; 44: 113–139.
  25. Chang HHY, Pannunzio NR, Adachi N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017; 18(8): 495–506.
  26. Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem. 2018; 293(27): 10524–10535.
  27. Konecny GE, Kristeleit RS. PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Br J Cancer. 2016; 115(10): 1157–1173.
  28. Mateo J, Lord CJ, Serra V, et al. A decade of clinical development of PARP inhibitors in perspective. Ann Oncol. 2019; 30(9): 1437–1447.
  29. Stewart MD, Merino Vega D, Arend RC, et al. Homologous Recombination Deficiency: Concepts, Definitions, and Assays. Oncologist. 2022; 27(3): 167–174.
  30. http://pol-pat.pl/index.php/standardy-i-wytyczne-w-patomorfologii/.
  31. Standardy akredytacyjne w patomorfologii. Dz. Urz. Min Zdrowia, poz. 75, z dnia 21 września 2021 r.
  32. Baldewpersad Tewarie NMS, van Ham M, Wouters M, et al. participants of the Dutch Gynecological Oncology Collaborator Group, participants of the Dutch Gynecological Oncology Collaborator Group. Guideline adherence in ovarian cancer for surgical staging in the Netherlands. Int J Gynecol Cancer. 2022; 32(12): 1592–1598.
  33. https://www.cap.org/protocols-and-guidelines/cancer-reporting-tools/cancer-protocol-templates.
  34. NCCN Guidelines Version 2.2023 Ovarian Cancer. https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf.
  35. Sánchez-Lorenzo L, Salas-Benito D, Villamayor J, et al. The BRCA Gene in Epithelial Ovarian Cancer. Cancers (Basel). 2022; 14(5).
  36. Vergote I, Banerjee S, Gerdes AM, et al. Current perspectives on recommendations for BRCA genetic testing in ovarian cancer patients. Eur J Cancer. 2016; 69: 127–134.
  37. Vergote I, González-Martín A, Ray-Coquard I, et al. European experts’ consensus group. European experts consensus: BRCA/homologous recombination deficiency testing in first-line ovarian cancer. Ann Oncol. 2022; 33(3): 276–287.
  38. Colombo N, Sessa C, du Bois A, et al. ESMO-ESGO Ovarian Cancer Consensus Conference Working Group. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease†. Ann Oncol. 2019; 30(5): 672–705.
  39. Konstantinopoulos PA, Norquist B, Lacchetti C, et al. Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline. J Clin Oncol. 2020; 38(11): 1222–1245.
  40. Robson ME, Storm CD, Weitzel J, et al. American Society of Clinical Oncology. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol. 2010; 28(5): 893–901.
  41. NCCN Guidelines Version 3.2023 Breast, Ovarian, and/or Pancreatic Cancer Genetic Assessment. https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf.
  42. ClinVar. https://www.ncbi.nlm.nih.gov/clinvar/.
  43. gnomAD. https://gnomad.broadinstitute.org/.
  44. Varsome. https://varsome.com/.
  45. Garrett A, Callaway A, Durkie M, et al. CanVIG-UK. Cancer Variant Interpretation Group UK (CanVIG-UK): an exemplar national subspecialty multidisciplinary network. J Med Genet. 2020; 57(12): 829–834.
  46. Valtcheva N, Nguyen-Sträuli BD, Wagner U, et al. Setting a diagnostic benchmark for tumor BRCA testing: detection of BRCA1 and BRCA2 large genomic rearrangements in FFPE tissue - A pilot study. Exp Mol Pathol. 2021; 123: 104705.
  47. Miller RE, Leary A, Scott CL, et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol. 2020; 31(12): 1606–1622.
  48. Doig KD, Fellowes AP, Fox SB. Homologous Recombination Repair Deficiency: An Overview for Pathologists. Mod Pathol. 2023; 36(3): 100049.
  49. Wagener-Ryczek S, Merkelbach-Bruse S, Siemanowski J. Biomarkers for Homologous Recombination Deficiency in Cancer. J Pers Med. 2021; 11(7).
  50. Konstantinopoulos PA, Ceccaldi R, Shapiro GI, et al. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov. 2015; 5(11): 1137–1154.
  51. Tymon-Rosario JR, Manara P, Manavella DD, et al. Homologous recombination deficiency (HRD) signature-3 in ovarian and uterine carcinosarcomas correlates with preclinical sensitivity to Olaparib, a poly (adenosine diphosphate [ADP]- ribose) polymerase (PARP) inhibitor. Gynecol Oncol. 2022; 166(1): 117–125.
  52. Davies H, Glodzik D, Morganella S, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017; 23(4): 517–525.
  53. Funingana IG, Reinius MAV, Petrillo A, et al. Can integrative biomarker approaches improve prediction of platinum and PARP inhibitor response in ovarian cancer? Semin Cancer Biol. 2021; 77: 67–82.



Onkologia w Praktyce Klinicznej - Edukacja