open access

Vol 56, No 3 (2022)
Invited Review Article
Submitted: 2022-03-06
Accepted: 2022-05-24
Published online: 2022-06-17
Get Citation

Clinical trials in multiple sclerosis: past, present, and future

Navid Manouchehri1, Afsaneh Shirani2, Victor H. Salinas1, Lauren Tardo1, Rehana Z. Hussain1, David Pitt3, Olaf Stuve14
·
Pubmed: 35712986
·
Neurol Neurochir Pol 2022;56(3):228-235.
Affiliations
  1. Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
  2. Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
  3. Department of Neurology, Yale University, New Haven, CT, United States
  4. Neurology Section, VA North Texas Health Care System, Dallas, TX, United States

open access

Vol 56, No 3 (2022)
INVITED REVIEW ARTICLES — LEADING TOPIC
Submitted: 2022-03-06
Accepted: 2022-05-24
Published online: 2022-06-17

Abstract

For the past four decades, multiple sclerosis (MS) has been a focus for clinical trial development and execution. Advances in translational neuroimmunology have led to the development of effective disease-modifying therapies (DMTs) that greatly benefit patients with MS and mitigate their burden of disease. These achievements also stem from continued progress made in the definition and discovery of sensitive disease diagnostic criteria, objective disability assessment scales, precise imaging techniques, and disease-specific biomarkers. As a result, our knowledge of MS pathophysiology is more mature; the established clinical practice for the diagnosis and management of MS could serve as a roadmap to guide the development of more disease-specific interventions. In this article we briefly review the main achievements in the evolution of clinical trials for MS, and discuss opportunities for improvements.

Abstract

For the past four decades, multiple sclerosis (MS) has been a focus for clinical trial development and execution. Advances in translational neuroimmunology have led to the development of effective disease-modifying therapies (DMTs) that greatly benefit patients with MS and mitigate their burden of disease. These achievements also stem from continued progress made in the definition and discovery of sensitive disease diagnostic criteria, objective disability assessment scales, precise imaging techniques, and disease-specific biomarkers. As a result, our knowledge of MS pathophysiology is more mature; the established clinical practice for the diagnosis and management of MS could serve as a roadmap to guide the development of more disease-specific interventions. In this article we briefly review the main achievements in the evolution of clinical trials for MS, and discuss opportunities for improvements.

Get Citation

Keywords

multiple sclerosis, clinical trials, pharmacology

About this article
Title

Clinical trials in multiple sclerosis: past, present, and future

Journal

Neurologia i Neurochirurgia Polska

Issue

Vol 56, No 3 (2022)

Article type

Invited Review Article

Pages

228-235

Published online

2022-06-17

Page views

4750

Article views/downloads

642

DOI

10.5603/PJNNS.a2022.0041

Pubmed

35712986

Bibliographic record

Neurol Neurochir Pol 2022;56(3):228-235.

Keywords

multiple sclerosis
clinical trials
pharmacology

Authors

Navid Manouchehri
Afsaneh Shirani
Victor H. Salinas
Lauren Tardo
Rehana Z. Hussain
David Pitt
Olaf Stuve

References (80)
  1. De Gasperis-Brigante CD, Parker JL, O'Connor PW, et al. Reducing clinical trial risk in multiple sclerosis. Mult Scler Relat Disord. 2016; 5: 81–88.
  2. Uitdehaag BMJ, Barkhof F, Coyle PK, et al. The changing face of multiple sclerosis clinical trial populations. Curr Med Res Opin. 2011; 27(8): 1529–1537.
  3. Montalban X. Review of methodological issues of clinical trials in multiple sclerosis. J Neurol Sci. 2011; 311 Suppl 1: S35–S42.
  4. Poser CM, Brinar VV. Diagnostic criteria for multiple sclerosis: an historical review. Clin Neurol Neurosurg. 2004; 106(3): 147–158.
  5. Gafson A, Giovannoni G, Hawkes CH. The diagnostic criteria for multiple sclerosis: From Charcot to McDonald. Mult Scler Relat Disord. 2012; 1(1): 9–14.
  6. Schumacher GA, Beebe G, Kibler RF, et al. Problems of experimental trials of therapy in multiple sclerosis: report by the panel on the evaluation of experimental trials of therapy in multiple sclerosis. Ann N Y Acad Sci. 1965; 122: 552–568.
  7. Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983; 13(3): 227–231.
  8. McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001; 50(1): 121–127.
  9. Brownlee WJ, Hardy TA, Fazekas F, et al. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017; 389(10076): 1336–1346.
  10. Polman CH, Reingold SC, Edan G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria". Ann Neurol. 2005; 58(6): 840–846.
  11. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011; 69(2): 292–302.
  12. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018; 17(2): 162–173.
  13. Filippi M, Preziosa P, Meani A, et al. MAGNIMS Study Group. Performance of the 2017 and 2010 Revised McDonald Criteria in Predicting MS Diagnosis After a Clinically Isolated Syndrome: A MAGNIMS Study. Neurology. 2022; 98(1): e1–e14.
  14. Tintore M, Cobo-Calvo A, Carbonell P, et al. Effect of changes in MS diagnostic criteria over 25 years on time to treatment and prognosis in patients with clinically isolated syndrome. Neurology. 2021; 97(17): e1641–e1652.
  15. Sormani MP, Tintorè M, Rovaris M, et al. Will Rogers phenomenon in multiple sclerosis. Ann Neurol. 2008; 64(4): 428–433.
  16. Inusah S, Sormani MP, Cofield SS, et al. Assessing changes in relapse rates in multiple sclerosis. Mult Scler. 2010; 16(12): 1414–1421.
  17. Manouchehri N, Stüve O. Trials and therapies in secondary progressive MS, simplified. Nat Rev Neurol. 2019; 15(8): 431–432.
  18. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014; 83(3): 278–286.
  19. Miller H, Newell DJ, Ridley A. Multiple sclerosis treatment of acute exacerbations with corticotrophin (a.c.t.h.). The Lancet. 1961; 278(7212): 1120–1122.
  20. Rose AS, Kuzma JW, Kurtzke JF, et al. Cooperative study in the evaluation of therapy in multiple sclerosis: ACTH vs placebo in acute exacerbation. Trans Am Neurol Assoc. 1969; 94: 126–133.
  21. Kurtzke JF. A new scale for evaluating disability in multiple sclerosis. Neurology. 1955; 5(8): 580–583.
  22. Ciccone A, Beretta S, Brusaferri F, et al. Corticosteroids for the long-term treatment in multiple sclerosis. Cochrane Database Syst Rev. 2008(1): CD006264.
  23. Arkin H, Sherman IC, Weinberg SL. Tetraethylammonium chloride in the treatment of multiple sclerosis. AMA Arch Neurol Psychiatry. 1950; 64(4): 536–545.
  24. Alexander L. New concept of critical steps in course of chronic debilitating neurologic disease in evaluation of therapeutic response; a longitudinal study of multiple sclerosis by quantitative evaluation of neurologic involvement and disability. AMA Arch Neurol Psychiatry. 1951; 66(3): 253–271.
  25. Cutter GR, Baier ML, Rudick RA, et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain. 1999; 122 (Pt 5): 871–882.
  26. Giovannoni G, Bermel R, Phillips T, et al. A brief history of NEDA. Mult Scler Relat Disord. 2018; 20: 228–230.
  27. Giovannoni G, Tomic D, Bright JR, et al. "No evident disease activity": The use of combined assessments in the management of patients with multiple sclerosis. Mult Scler. 2017; 23(9): 1179–1187.
  28. Cree BAC, Gourraud PA, Oksenberg JR, et al. University of California, San Francisco MS-EPIC Team:. Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol. 2016; 80(4): 499–510.
  29. Viñuela FV, Fox AJ, Debrun GM, et al. New perspectives in computed tomography of multiple sclerosis. AJR Am J Roentgenol. 1982; 139(1): 123–127.
  30. Young IR, Hall AS, Pallis CA, et al. Nuclear magnetic resonance imaging of the brain in multiple sclerosis. Lancet. 1981; 2(8255): 1063–1066.
  31. Simon JH, Jacobs LD, Wende K, et al. Magnetic resonance studies of intramuscular interferon beta-1a for relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group. Ann Neurol. 1998; 43(1): 79–87.
  32. Grossman RI, Gonzalez-Scarano F, Atlas SW, et al. Multiple sclerosis: gadolinium enhancement in MR imaging. Radiology. 1986; 161(3): 721–725.
  33. Sormani MP, Filippi M, de Stefano N, et al. MAGNIMS Steering Committee. MRI as an outcome in multiple sclerosis clinical trials. Neurology. 2009; 73(22): author reply 1932-3..
  34. Guo AC, MacFall JR, Provenzale JM. Multiple sclerosis: diffusion tensor MR imaging for evaluation of normal-appearing white matter. Radiology. 2002; 222(3): 729–736.
  35. Harrison DM, Roy S, Oh J, et al. Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis. JAMA Neurol. 2015; 72(9): 1004–1012.
  36. Manouchehri N, Stüve O. Choroid plexus volumetrics and brain inflammation in multiple sclerosis. Proc Natl Acad Sci U S A. 2021; 118(40).
  37. Fleischer V, Gonzalez-Escamilla G, Ciolac D, et al. Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. Proc Natl Acad Sci U S A. 2021; 118(36).
  38. Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018; 378(2): 169–180.
  39. Absinta M, Sati P, Schindler M, et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest. 2016; 126(7): 2597–2609.
  40. Wattjes MP, Ciccarelli O, Reich DS, et al. Magnetic Resonance Imaging in Multiple Sclerosis study group, Consortium of Multiple Sclerosis Centres, North American Imaging in Multiple Sclerosis Cooperative MRI guidelines working group. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021; 20(8): 653–670.
  41. Giovannoni G, Popescu V, Wuerfel J, et al. Smouldering multiple sclerosis: the 'real MS'. Ther Adv Neurol Disord. 2022; 15: 17562864211066751.
  42. Filippini G, Brusaferri F, Sibley WA, et al. Corticosteroids or ACTH for acute exacerbations in multiple sclerosis. Cochrane Database Syst Rev. 2000(4): CD001331.
  43. Optic Neuritis Study Group. The 5-year risk of MS after optic neuritis. Experience of the optic neuritis treatment trial. Neurology. 1997; 49(5): 1404–1413.
  44. Krieger S, Sorrells SF, Nickerson M, et al. Mechanistic insights into corticosteroids in multiple sclerosis: war horse or chameleon?. Clin Neurol Neurosurg. 2014; 119: 6–16.
  45. Paty DW, Li DK. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology. 1993; 43(4): 655–661.
  46. Paty DW, Li DK. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology. 1993; 43(4): 662–667.
  47. Paty DW, McFarland H. Magnetic resonance techniques to monitor the long term evolution of multiple sclerosis pathology and to monitor definitive clinical trials. J Neurol Neurosurg Psychiatry. 1998; 64(Suppl 1): S47–51.
  48. Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1995; 45(7): 1268–1276.
  49. Dubey D, Kieseier BC, Hartung HP, et al. Dimethyl fumarate in relapsing-remitting multiple sclerosis: rationale, mechanisms of action, pharmacokinetics, efficacy and safety. Expert Rev Neurother. 2015; 15(4): 339–346.
  50. O'Connor P, Wolinsky JS, Confavreux C, et al. TEMSO Trial Group. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011; 365(14): 1293–1303.
  51. Stüve O, Warnke C, Deason K, et al. CD19 as a molecular target in CNS autoimmunity. Acta Neuropathol. 2014; 128(2): 177–190.
  52. Forsthuber TG, Cimbora DM, Ratchford JN, et al. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord. 2018; 11: 1756286418761697.
  53. Calabresi PA, Radue EW, Goodin D, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014; 13(6): 545–556.
  54. Shirani A, Stüve O. Natalizumab for multiple sclerosis: a case in point for the impact of translational neuroimmunology. J Immunol. 2017; 198(4): 1381–1386.
  55. Shirani A, Stüve O. Natalizumab: perspectives from the bench to bedside. Cold Spring Harb Perspect Med. 2018; 8(12).
  56. Salzer J, Svenningsson R, Alping P, et al. Rituximab in multiple sclerosis: A retrospective observational study on safety and efficacy. Neurology. 2016; 87(20): 2074–2081.
  57. Hauser SL, Bar-Or A, Cohen JA, et al. ASCLEPIOS I and ASCLEPIOS II Trial Groups. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N Engl J Med. 2020; 383(6): 546–557.
  58. Hauser SL, Bar-Or A, Comi G, et al. OPERA I and OPERA II Clinical Investigators. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017; 376(3): 221–234.
  59. Kappos L, Bar-Or A, Cree BAC, et al. EXPAND Clinical Investigators. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018; 391(10127): 1263–1273.
  60. Montalban X, Hauser SL, Kappos L, et al. ORATORIO Clinical Investigators. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med. 2017; 376(3): 209–220.
  61. Manouchehri N, Stüve O. Should ocrelizumab be used in non-active primary progressive multiple sclerosis? Time for a re-assessment. Ther Adv Neurol Disord. 2021; 14.
  62. Paty DW, Li DK. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology. 1993; 43(4): 655–661.
  63. Lublin FD, Reingold SC. Placebo-controlled clinical trials in multiple sclerosis: ethical considerations. National Multiple Sclerosis Society (USA) Task Force on Placebo-Controlled Clinical Trials in MS. Ann Neurol. 2001; 49(5): 677–681.
  64. Polman CH, Reingold SC, Barkhof F, et al. Ethics of placebo-controlled clinical trials in multiple sclerosis: a reassessment. Neurology. 2008; 70(13 Pt 2): 1134–1140.
  65. Solomon AJ, Bernat JL. A review of the ethics of the use of placebo in clinical trials for relapsing-remitting multiple sclerosis therapeutics. Mult Scler Relat Disord. 2016; 7: 109–112.
  66. Calabresi PA, Kieseier BC, Arnold DL, et al. ADVANCE Study Investigators. Pegylated interferon β-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 2014; 13(7): 657–665.
  67. Cohen JA, Coles AJ, Arnold DL, et al. CARE-MS I investigators. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012; 380(9856): 1819–1828.
  68. Coles AJ, Twyman CL, Arnold DL, et al. CARE-MS II investigators. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012; 380(9856): 1829–1839.
  69. Kappos L, Wiendl H, Selmaj K, et al. Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2015; 373(15): 1418–1428.
  70. Comi G, Kappos L, Selmaj KW, et al. SUNBEAM Study Investigators. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol. 2019; 18(11): 1009–1020.
  71. Hu C, Dignam JJ. Biomarker-Driven oncology clinical trials: key design elements, types, features, and practical considerations. JCO Precis Oncol. 2019; 3.
  72. Sormani MP, Bruzzi P. MRI lesions as a surrogate for relapses in multiple sclerosis: a meta-analysis of randomised trials. Lancet Neurol. 2013; 12(7): 669–676.
  73. Cocozza S, Petracca M, Mormina E, et al. Cerebellar lobule atrophy and disability in progressive MS. J Neurol Neurosurg Psychiatry. 2017; 88(12): 1065–1072.
  74. Bergsland N, Zivadinov R, Dwyer MG, et al. Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients. Mult Scler. 2016; 22(10): 1327–1336.
  75. Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res. 2008; 27(1): 45–88.
  76. Manouchehri N, Zhang Y, Salter A, et al. Clinical trials in multiple sclerosis: potential future trial designs. Ther Adv Neurol Disord. 2019; 12.
  77. Li V, Leurent B, Barkhof F, et al. Designing Multi-arm Multistage Adaptive Trials for Neuroprotection in Progressive Multiple Sclerosis. Neurology. 2022; 98(18): 754–764.
  78. Barro C, Leocani L, Leppert D, et al. Fluid biomarker and electrophysiological outcome measures for progressive MS trials. Mult Scler. 2017; 23(12): 1600–1613.
  79. Barro C, Benkert P, Disanto G, et al. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain. 2018; 141(8): 2382–2391.
  80. Novakova L, Zetterberg H, Sundström P, et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology. 2017; 89(22): 2230–2237.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl