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ABSTRACT

For the past four decades, multiple sclerosis (MS) has been a focus for clinical trial development and execution. Advances in 
translational neuroimmunology have led to the development of effective disease-modifying therapies (DMTs) that greatly 
benefit patients with MS and mitigate their burden of disease. These achievements also stem from continued progress made 
in the definition and discovery of sensitive disease diagnostic criteria, objective disability assessment scales, precise imaging 
techniques, and disease-specific biomarkers. As a result, our knowledge of MS pathophysiology is more mature; the estab-
lished clinical practice for the diagnosis and management of MS could serve as a roadmap to guide the development of more 
disease-specific interventions. In this article we briefly review the main achievements in the evolution of clinical trials for MS, 
and discuss opportunities for improvements. 
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Introduction

The widespread use of today disease-modifying therapies 
(DMTs) as the mainstay of treatment in multiple sclerosis 
(MS) draws on data provided by clinical trials over the past 
two decades. In parallel with the rapidly growing treatment 
landscape for MS, clinical trials have evolved to incorporate 
innovative designs and mechanistic insights [1]. Revised 
diagnostic criteria and the characterisation of MS phenotypes 
across the age range have improved MS pharmacotherapy 
trials [2, 3]. Today, MS trials benefit from sensitive diagnostic 
criteria and clinically relevant follow-up data permitted by the 
latest imaging techniques and objective disability progression 
documentation i.e. the expanded disability status scale (EDSS). 
Furthermore, new frontiers in para-clinical exams provide 
a growing list of biomarkers, some of which might hold po-
tential biological significance. 

All currently approved DMTs diminish two types of dis-
ease activity:  the occurrence of inflammatory signal changes 
on magnetic resonance imaging (MRI); and the frequency 
of clinical relapses. MS trials can now consider potential 
pathophysiological differences between active and non-active 
disease, and recruit patients into prospective trials accordingly. 

MS is a clinically, radiologically and pathologically hete
rogeneous condition. Treatment with various DMTs with 
different mechanisms of action (MOA) further differentiates 
patients with MS. This introduces statistical and ethical chal-
lenges to future trials. For instance, rather than placebo, novel 
treatments are likely to be compared to approved effective 
control DMTs, which might affect estimates of the magnitude 
of treatment effect and subsequently the success rate of the 
future trial. As the global cohort of patients diagnosed with 
MS reach advanced ages, they can be expected to transition 
to secondary progressive non-active MS. Regrettably, in spite 
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of all their success in treating active MS, current DMTs have 
failed to provide meaningful clinical benefit for older patients 
living with progressive non-active MS. Here, we discuss how 
trials have evolved and contributed to the current state of 
clinical practice and research in MS.

Milestones in evolution of MS trials 

MS diagnosis 
Consistency in patient recruitment for trials depends on 

a consensus regarding diagnostic criteria. Optimal trial design 
in MS requires the appreciation of differences that distinguish 
MS subtypes. Originally, clinical disease course was adopted 
as a mean to categorise these subtypes and unify trials efforts 
in early studies. 

Charcot’s triad utilised nystagmus, intention tremor, and 
scanning speech in an initial attempt to define MS [4, 5]. In 
hindsight, this approach probably described patients with 
a preponderance of demyelinating lesions in specific locations 
of the central nervous system (CNS) such as the cerebellum, 
rather than an actual subset which holds any relevance for 
guiding clinical trial design and tailored treatment develop-
ment. Historical MS diagnostic criteria, such as Schumacher’s, 
defined the disease as an inflammatory disorder of the CNS 
with dissemination in time and space [6]. This was later ex-
panded by Poser to address data driven from cerebrospinal 
fluid (CSF) and imaging components [7]. Eventually, it was 
the McDonald criteria that incorporated clinical aspects, 
MRI data and CSF oligoclonal bands to further simplify 
MS diagnosis. Revisions to the original McDonald criteria 
included gadolinium (Gd) enhancing lesions as a correlate of 
dissemination in time, and the co-existence of periventricular, 
juxtacortical, infratentorial or spinal cord lesions as a corre-
late of dissemination in space [8]. The diagnostic sensitivity 
of subsequently revised criteria was even further enhanced 
by considering patients presenting with clinically isolated 
syndrome (CIS) as definite MS, when MRI and CSF finding 
corroborated the diagnosis [9–14]. This increase in diagnostic 
sensitivity facilitated the recruitment of patients into potential 
trials. Currently, the approved criteria allow for a definite MS 
diagnosis within a single time frame pertinent to a typical 
demyelinating event, without waiting for a second attack. 

Inadvertently earlier enrollment of patients during the 
course of the disease can artificially improve prognosis, due to 
lead-time bias. This is especially important when drawing com-
parisons involving historical trials in a fast-evolving paradigm 
like DMTs in MS. Under the 2001 and 2017 McDonald criteria, 
within 12 months of presentation, 50% of patients with CIS 
proceeded to definite MS. But based on the Poser criteria, only 
a 20% conversion rate to definite MS diagnosis was observed, 
underlining the sensitivity of the McDonald criteria [15]. It 
is difficult to ascertain to what extent the current perceived 
improvement in patients’ clinical status is attributable to an 
expedited diagnosis, independent of DMT effect. Compared 

to historical cohorts of people with MS, modern MS cohorts, 
on average, have a lower annualised relapse rate (ARR) and 
a milder course of disease [16]. In fact, even patients in the 
placebo groups are experiencing longer relapse-free durations 
following their enrollments in trials; however, this is not as 
pronounced compared to DMT-treated patients who show 
statistically significant improvement in tangible clinical out-
comes [2, 16]. 

More empirical evidence is urgently required in order to 
precisely calculate the extent of lead-time bias in the overall 
improved outcome of patients with MS receiving second or 
third generation DMTs. The TRaditional versus Early Ag-
gressive Therapy for MS (TREAT-MS) trial is a randomised 
controlled trial that aims to: (A) evaluate, jointly and inde-
pendently among patients deemed at higher risk vs lower 
risk for disability accumulation, whether an early therapeutic 
intervention considered highly effective versus a first-genera-
tion agent impacts the medium-term risk of disability; and (B) 
assess if, among patients deemed at lower risk for disability 
who start on first-line MS agents but experience breakthrough 
disease, those who switch to a higher-efficacy intervention 
versus a new first-line therapy have a different medium-term 
risk of disability (ClinicalTrials.gov/NCT03500328). 

Regarding progressive MS, trials so far have used in-
congruous inclusion criteria to enroll patients. This lack of 
consistency has diminished the quality of pertinent trials for 
meta-analytical purposes. An objective definition of non-ac-
tive progressive MS is crucial for trials that specifically seek to 
evaluate DMT efficacy in primary and secondary progressive 
MS phenotypes [17]. Building on the diagnostic acumen pro-
vided by the McDonald criteria,  the 2013 Lublin consensus 
criteria drawn up by a panel of experts ratified a more precise 
definition for active vs. non-active disease and drew distinc-
tions between relapsing, worsening, and progressive MS, thus 
paving the way for consistency in related trials [18]. Current 
methods in trials involving active relapsing MS allows for reli-
able appreciation of correlations between measures of disease 
activity and response to novel DMTs. Once prospective trials 
for non-active progressive MS achieve the recruitment of ho-
mogenous participants, similar novel objective measures may 
be developed to allow the evaluation of potential therapeutics.

Disability assessment in MS
The earliest therapeutic attempts to alter the disease 

course in MS by controlling inflammation were performed by 
Miller et al. and later by Rose et al., via the administration of 
adrenocorticotropic hormone (ACTH) or a saline placebo in 
patients believed to have had an acute clinical relapse [19, 20]. 
These studies implemented seemingly identical interventions; 
however, the outcome measures were fundamentally different. 
While Miller et al. measured treatment efficacy through sub-
jective reports of improvement during follow up interviews, 
Rose et al. derived an objective assessment of improvement 
through neurological disability status scales [21]. Subsequent 
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longitudinal data challenged the treatment intervention in 
both these trials, since adopting long-term monotherapy with 
corticosteroids eventually proved ineffective in MS manage-
ment [22]. However, the implementation of the disability scale 
used in the latter approach grew to become a pillar of clinical 
data appraisal for MS trials involving treatment efficacy. 

The move to define disability as an objective disease out-
come started with the works of Arkin et al. [23, 24]. A diverse 
neurological scale was originally suggested, and this was later 
simplified by Kurtzke into a 10-point disability scale [21]. The 
new scale could track clinical status in patients with MS and 
gave uniform and reproducible results. The introduction of 
half points further refined this tool; the expanded disability 
status scale (EDSS) is used today by all MS clinicians to assess 
disability in patients with MS. Alternatively, the MS functional 
composite (MSFC) for assessment of disability in MS was later 
developed to mitigate the inherent shortcomings of the EDSS 
including its over-dependence on bipedal ambulation, its lack 
of sensitivity to cognitive decline, and its non-linearity [25]. 
MSFC successfully registered arm function, dexterity, and 
cognitive capacity on top of ambulation. MSFC was criticised 
for the learning phenomenon during paced auditory serial ad-
dition test (PASAT). MSFC utilises z-scores to depict deviation 
from a reference population, and this might have contributed 
to its failure to replace the easily available EDSS as the standard 
assessment tool in MS clinical trials. 

The term ‘no evidence of disease activity’ (NEDA) was 
introduced in 2013 to clinical practice and research into 
MS [26]. It describes a disease-free status as a surrogate 
marker for treatment response in patients with MS. The 
early NEDA criteria comprised data pertaining to relapse 
rate, new or enlarging T2 lesions or Gd-enhancing lesions, 
as well as confirmed disability worsening as measured by 
EDSS. To capture more subtle disease-mediated insults and 
pertinent treatment effects, the original NEDA criteria have 
since been updated several times. NEDA-4 expanded on 
its predecessor by including brain atrophy. Higher domain 
NEDA status later incorporated the use of neurofilament 
light chain (NfL) levels in CSF as a close correlate of ongo-
ing axonal injury [27]. The NEDA criteria encapsulate an 
expanding yet granular view of MS disease activity. Previous 
studies have commented on the prognostic value of NEDA 
for future disability accumulation [28]. It is conceivable 
that NEDA could be employed independently as a holistic 
outcome measure in future DMT trials. 

CNS imaging in MS 
Prior to the age of MRI, computed tomography (CT) 

scans were the only option for investigating CNS structural 
attributes in neurological disorders including MS. Naturally, 
CT scans were ill-equipped to record many therapeutically 
relevant structural changes recognised today in MS patients. 
At best, CT scans could register contrast enhancing lesions, 
originally correlated with an active disease; these lesions 

appeared to be resolved on subsequent CT scans after short 
steroid regimens [29]. 

The advent of MRI permitted a leap forward in the ap-
preciation of structural changes pertinent to disease activity 
that were detectable through imaging. This also provided 
a revolutionary advantage for MS trials [30]. As one of the 
earliest effective DMTs, interferon β-1b (IFNβ-1b) injection 
was successfully attempted by Paty et al. as an intervention 
for MS treatment between 1988 and 1993. Demonstration 
of IFNβ1-b’s clinical success was greatly augmented by the 
evidence provided through MRI technology. MRI data proved 
that besides a better clinical outcome, treatment with IFNβ-1b 
significantly reduced the number of new and Gd enhancing 
lesions. 

These results for the first time tied the MS imaging data to 
the approval of a novel therapy, setting a precedent for MRI 
as a reliable outcome measure in MS trials [31]. Today new 
Gd enhancing lesions, along with new or enlarging T2-lesions 
on MRI, are associated with immunologically active disease. 
Brain and spinal cord atrophy has been shown to correlate 
with disability progression [32, 33]. 

Advanced imaging techniques provide better resolution 
and precision; for instance, diffusion tensor imaging and 
magnetic resonance spectroscopy have been able to confirm 
disease activity beyond MRI lesion borders and within nor-
mal-appearing CNS tissues [34]. Similarly, seven-Tesla MRI 
has shown how conventional MRI studies might have under-
estimated the true MS lesion burden, especially in cortical 
grey matter [35]. Much like the leap that took place when MRI 
replaced CT scans, advanced imaging techniques may shine 
a light on new measures of disease activity and provide further 
therapeutic targets for future trials. Of note is the volumetric 
analysis of the choroid plexus; this immunologically-sensitive 
organ closely tracks the biological events pertinent to CSF 
and exhibits volume alterations relative to both MS disease 
activity and type of DMT [36, 37], and the identification and 
longitudinal assessment of chronic active MS lesions, also 
termed ‘smouldering lesions’ with paramagnetic rims [38–41].  

DMT mechanism of action
The earliest clinical interventions in MS treatment trials 

depict the consensus on the disease pathophysiology; namely, 
acute inflammation drives MS activity which warrants treat-
ment with corticosteroids or their agonists (i.e. ACTH) [19, 
20]. Corticosteroids have been employed as treatment during 
active MS relapses as an attempt to mitigate organ damage  
[42], although longitudinal observations have not supported 
meaningful benefits to patients’  long term clinical prognosis 
[22, 43, 44]. 

In contrast, data generated during IFNβ-1b trials showed 
a clinically meaningful benefit of IFNβ-1b treatment and af-
firmed IFNβ-1b as the first DMT approved for MS [45]. The 
validating study did also speculate about possible MOAs for 
the favourable results seen with IFNβ-1b therapy. Specifically, 
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interferon gamma (IFNγ) antagonism, suppression of immune 
response via suppressor T cells, and reduction in antigen pres-
entation capacity of antigen presenting cells were suggested 
[46, 47]. To date, the exact MOA for IFNβ-1b in MS treat-
ment remains controversial; however, this benchmark study 
cemented the paradigm that immunomodulation may prove 
favourable for MS, paving the way towards the development 
of other DMTs [48–50]. In fact, subsequent introduction of 
monoclonal antibodies as highly effective DMTs provided 
evidence for target-specificity against immunological cell 
subsets in relation to MS pathogenesis [51, 52]; furthermore, 
traffic-inhibiting agents suggested compartment-specificity of 
immunological events in relation to CNS autoimmunity. Natal-
izumab in particular showed how the access of encephalitho
genic cells across the blood-brain barrier is a crucial step for 
disease establishment and ongoing activity [53–55]. Moreover, 
the success of B cell depleting therapies implied involvement 
of B cells in disease pathogenesis [56–58]. 

Future novel therapies will have to outperform the cur-
rent DMTs, therefore facing higher thresholds before they are 
adopted into routine clinical care. Nonetheless, these thresholds 
should and will revolve around unexplored MOAs that may 
prove relevant in relation to MS activity and progression, in 
particular in relation to non-active progressive MS, where most 
DMTs have failed. While studies on ocrelizumab for primary 
progressive MS and on siponimod for secondary progressive 
MS have suggested relative efficacies compared to placebo, it is 
likely that the observed efficacies were driven by a minority of 
enrolled patients with active disease [17, 59–61]. Future trials 
in progressive MS may prioritise neuroprotection, regenera-
tion, and remyelination as their primary goal.

Trial designs 
As stated before, more sensitive diagnostic criteria, along 

with the availability of treatments with proven clinical benefits, 
have complicated future MS trial design. Earlier diagnosis and 
aggressive treatment strategies have significantly benefited 
MS patients and reduced the overall disease activity in MS 
cohorts. In current trials, unexpected disease activity may 
warrant rescue therapies with available effective DMT, dimini
shing the overall ARR of the respective cohort. In contrast, 
disproportionate enrollment of refractory MS phenotypes, i.e. 
non-responders to current DMTs in trials for new candidate 
therapies, might artificially deflate the potential efficacy of such 
therapies. Evidently, a head-to-head comparison of all available 
DMTs in randomised clinical trials is logistically and ethically 
impossible. As a result, MS trial designs over time have adopted 
changes in order to address some of these constraints. 

Trials for the earliest DMTs, which enrolled placebo-treated  
controls, had clinical and statistical significance of effects being 
established against virtually no modification to natural disease 
course. IFNβ-1b and glatiramer acetate were each approved in 
such double-blind randomised placebo-controlled trials [45, 

48]. A plethora of evidence attests to the detrimental conse-
quences of delays in MS treatment, and therefore a generic 
placebo-controlled approach in MS trial design was deemed 
no longer ethical by an international task force in 2000 and 
2008 [62, 63]. However, it recognised certain conditions that 
could allow for the use of placebo in trials. These conditions 
included patient refusal of available treatments, treatment 
failure, or regional unavailability of other treatments. In fact, 
teriflunomide, dimethyl fumarate, and fingolimod were all 
approved in comparison to placebo arms in spite of available 
and approved DMTs [64]. Considering the weight of evidence 
behind the pivotal role of early treatment in MS, the phase III 
trial for peginterferon β1-a was perhaps the last conservable 
account for placebo-controlled MS trials [65]. The dynamic 
nature of MS pathophysiology, specifically in response to dif-
ferent treatments, backs the rationale for placebo-controlled 
trials. Alemtuzumab, a highly effective DMT, was approved in 
2014 without any comparison to placebo, setting a precedent 
for future novel therapies [66, 67]. Different classes of DMTs, 
including anti-CD20 B cell depleting agents, ocrelizumab and 
ofatumumab, as well as ozanimod, a sphingosine-1 phosphate 
receptor modulator, were all approved in trials with active 
comparator controls, confirming the feasibility of such a design 
in trials of new MS therapeutics [58, 68, 69]. Given the range 
of currently effective DMTs, one could argue that cessation of 
placebo-controlled trials is in fact in the best interest of MS pa-
tients. Any new DMT that is validated in an active-comparator  
design outperforms the benchmark for treatment efficacy. 
However, this very mechanism also requires the said trials to 
recruit larger sample cohorts, rendering them more costly to 
perform. Similarly, other designs such as combination trials 
may entail the recruitment of large sample sizes and longer 
follow ups before any meaningful synergistic benefits are 
detectable; however, within a select subset of therapies with 
complementary MOAs, DMT synergism may be interrogated 
in phase IV open label studies with relatively small samples 
(Clinical trials.gov/ NCT03135249, NCT04178005). 

Outlook for MS clinical trials 
Traditionally, MRI-based outcome measures and disabil-

ity scales have proven useful in establishing DMT efficacy in 
trials. Their usefulness, however, is challenged by the ever- 
-expanding scope of current and future trials. The downside 
to these outcome measures is twofold. First, they require the 
enrollment of very large patient cohorts, something which has 
become increasingly difficult with the availability of effective 
approved DMTs. 

Second, many of the pathophysiological events pertinent 
to MS activity and progression do not reach their detection 
threshold. In fact, the hesitance of regulatory authorities, cli-
nicians and researchers to adopt more sensitive and efficient 
measures is primarily because of the unavailability of alterna-
tive established reproducible measures with clinical relevance. 
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A major barrier specific to MS is the lack of representative 
biomarkers. Trials in the context of other conditions rely on 
such biomarkers as seen in the case of treatment development 
for cancer [70]. Disease-specific biomarkers would permit 
objective classification algorithms for diagnostic purposes as 
well, contributing to homogenisation of recruited samples in 
validating trials. 

The main culprit behind MS, i.e. the immune system, 
is a dynamic entity; therefore a representative biomarker in 
MS, with reliable diagnostic and prognostic values to replace 
clinical correlates, is likely to prove elusive. 

Efforts have been made to enhance the data gleaned from 
current imaging techniques. For instance, MRI-derived lesion 
load and brain atrophy sensitively measure current and past 
disease activity and facilitate an expedited transition to phase 
III trials for promising candidates [71]. The evolving imaging 
paradigms now attribute more weight to regional atrophy in 
CNS areas that are more sensitive to change and have better 
prognostic power including grey matter, thalamus and cere-
bellum [72, 73]. Optical coherence topography has seen an 
interest in trials to assess treatment efficacy as thinning of the 
retinal nerve fibre layer correlates to axonal injury [74]. Trials 
involving non-active progressive MS in particular might ben-
efit from further validation of such methods. Non-traditional 
trial designs, such as multi-arm multistage adaptive trials 
or recruiting from biomarker-driven MS endophenotypes, 
to maximise the potential for response to new treatments, 
may further facilitate the validation of effective therapies in 
progressive MS [75, 76].

Biological fluid biomarkers are ideal outcome measures 
for trial purposes and patient follow up. Among the many 
nominees for a potential fluid biomarker in MS, so far only 
NFL has produced promising results in terms of correlation 
with ongoing neuroaxonal injury in patients with MS. Specifi
cally, it has been shown to correlate with relapse incidence, 
EDSS scores, MRI lesion load, and brain or spinal cord at-
rophy [77–79]. NFL is especially interesting since its plasma 
levels correlate with its CSF levels, allowing for less invasive 
measures; however as a sensitive measure, NFL plasma level 
is prone to MS-independent fluctuations. Prospective multi-
centre studies are required before NFL is widely adopted by 
clinicians and MS researchers. 

In conclusion, the evolving discovery and validation of 
DMTs in MS clinical trials have provided an array of thera-
peutics that have improved clinical outcomes and quality of 
life for patients with MS. Current achievements in disease 
diagnosis and detection of disease activity, along with a better 
understanding of the mechanisms underpinning the disease 
pathogenesis, have broadened the horizon for therapeutic 
possibilities. The future may well lie in biomarker-based in-
dividualised pharmacotherapy.
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