Tom 14, Nr 1 (2023)
Inne materiały uzgodnione z Redakcją
Opublikowany online: 2023-05-11
Wyświetlenia strony 471
Wyświetlenia/pobrania artykułu 24
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Udział flory jelitowej w rozwoju chorób układu sercowo-naczyniowego

Justyna Marcickiewicz1, Małgorzata Moszak2
Forum Zaburzeń Metabolicznych 2023;14(1):29-42.

Streszczenie

Choroby układu krążenia (CVD, cardiovascular diseases) od lat przodują wśród najczęstszych przyczyn zgonów wśród ludzi na całym świecie. Do najbardziej rozpowszechnionych należą: nadciśnienie tętnicze (HT, hypertension), choroba wieńcowa (CAD, coronary artery disease), dyslipidemia oraz miażdżyca naczyń krwionośnych. Następstwami CVD są zawały serca, udary mózgu oraz niewydolność serca. W ostatnich latach rośnie liczba doniesień naukowych na temat interakcji zachodzących pomiędzy mikrobiotą jelitową (GM, gut microbiota) a homeostazą organizmu gospodarza, w tym także danych dotyczących wpływu mikrobioty na patofizjologię układu krążenia. W wielu badaniach wśród pacjentów z CVD zaobserwowano specyficzne zmiany w mikrobiocie, charakteryzujące się przerostem bakterii patogennych powiązanych z markerami zapalnymi oraz zmniejszonym zasiedleniem przewodu pokarmowego przez bakterie potencjalnie korzystne. Wśród mechanizmów tłumaczących wpływ dysbiozy na rozwój CVD wymienia się głównie zwiększoną przepuszczalność bariery jelitowej, zaburzenia przemian kwasów żółciowych oraz wpływ metabolitów wytwarzanych przez mikroorganizmy przewodu pokarmowego na układ immunologiczny gospodarza. Rosnące zainteresowanie tematem GM i jej wpływu na rozwój CVD skłania do poszukiwania nowych rozwiązań terapeutycznych, nakierowanych na modulację mikrobiomu w celu zmniejszania ryzyka sercowo-naczyniowego oraz łagodzenia powikłań CVD.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Hajiagha MN, Taghizadeh S, Asgharzadeh M, et al. Gut Microbiota and Human Body Interactions; Its Impact on Health: A Review. Curr Pharm Biotechnol. 2022; 23(1): 4–14.
  2. Prince AL, Chu DM, Seferovic MD, et al. The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome. Cold Spring Harb Perspect Med. 2015; 5(6).
  3. Butel MJ, Waligora-Dupriet AJ, Wydau-Dematteis S. The developing gut microbiota and its consequences for health. J Dev Orig Health Dis. 2018; 9(6): 590–597.
  4. Al Nabhani Z, Eberl G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 2020; 13(2): 183–189.
  5. Rey-Mariño A, Francino MP. Nutrition, Gut Microbiota, and Allergy Development in Infants. Nutrients. 2022; 14(20).
  6. El-Sayed A, Aleya L, Kamel M. Microbiota's role in health and diseases. Environ Sci Pollut Res Int. 2021; 28(28): 36967–36983.
  7. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012; 489(7415): 242–249.
  8. Vandeputte D, Kathagen G, D'hoe K, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature. 2017; 551(7681): 507–511.
  9. Duca F, Gérard P, Covasa M, et al. Metabolic interplay between gut bacteria and their host. Front Horm Res. 2014; 42: 73–82.
  10. Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018; 9(4): 308–325.
  11. Sanchez-Rodriguez E, Egea-Zorrilla A, Plaza-Díaz J, et al. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients. 2020; 12(3).
  12. Joseph P, Leong D, McKee M. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res. 2017; 121(6): 677–694.
  13. Cainzos-Achirica M, Fedeli U, Sattar N, et al. Epidemiology, risk factors, and opportunities for prevention of cardiovascular disease in individuals of South Asian ethnicity living in Europe. Atherosclerosis. 2019; 286: 105–113.
  14. Fuchs FD, Whelton PK. High Blood Pressure and Cardiovascular Disease. Hypertension. 2020; 75(2): 285–292.
  15. Hayashi T, Yamashita T, Watanabe H, et al. Gut Microbiome and Plasma Microbiome-Related Metabolites in Patients With Decompensated and Compensated Heart Failure. Circ J. 2018; 83(1): 182–192.
  16. Yoshida N, Yamashita T, Hirata KI. Gut Microbiome and Cardiovascular Diseases. Diseases. 2018; 6(3).
  17. Zhou W, Cheng Y, Zhu P, et al. Implication of Gut Microbiota in Cardiovascular Diseases. Oxid Med Cell Longev. 2020; 2020: 5394096.
  18. Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018; 16(3): 171–181.
  19. Zhu Qi, Gao R, Zhang Yi, et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics. 2018; 50(10): 893–903.
  20. Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017; 5(1): 14.
  21. Samadian F, Dalili N, Jamalian A. Lifestyle Modifications to Prevent and Control Hypertension. Iran J Kidney Dis. 2016; 10(5): 237–263.
  22. Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015; 65(6): 1331–1340.
  23. Dan X, Mushi Z, Baili W, et al. Differential Analysis of Hypertension-Associated Intestinal Microbiota. Int J Med Sci. 2019; 16(6): 872–881.
  24. Sun S, Lulla A, Sioda M, et al. Gut Microbiota Composition and Blood Pressure. Hypertension. 2019; 73(5): 998–1006.
  25. de la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R, et al. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients. 2018; 11(1).
  26. Jackson MA, Verdi S, Maxan ME, et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun. 2018; 9(1): 2655.
  27. Verhaar BJH, Collard D, Prodan A, et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. Eur Heart J. 2020; 41(44): 4259–4267.
  28. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012; 490(7418): 55–60.
  29. Yan Q, Gu Y, Li X, et al. Alterations of the Gut Microbiome in Hypertension. Front Cell Infect Microbiol. 2017; 7: 381.
  30. Huart J, Leenders J, Taminiau B, et al. Gut Microbiota and Fecal Levels of Short-Chain Fatty Acids Differ Upon 24-Hour Blood Pressure Levels in Men. Hypertension. 2019; 74(4): 1005–1013.
  31. Zuo K, Li J, Xu Q, et al. Dysbiotic gut microbes may contribute to hypertension by limiting vitamin D production. Clin Cardiol. 2019; 42(8): 710–719.
  32. Kim S, Rigatto K, Gazzana MB, et al. Altered Gut Microbiome Profile in Patients With Pulmonary Arterial Hypertension. Hypertension. 2020; 75(4): 1063–1071.
  33. Mushtaq N, Hussain S, Zhang S, et al. Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension. Int J Mol Med. 2019; 44(2): 513–522.
  34. Chang Y, Chen Y, Zhou Q, et al. Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin Sci (Lond). 2020; 134(2): 289–302.
  35. Li H, Liu B, Song J, et al. Characteristics of Gut Microbiota in Patients with Hypertension and/or Hyperlipidemia: A Cross-Sectional Study on Rural Residents in Xinxiang County, Henan Province. Microorganisms. 2019; 7(10).
  36. Berberich AJ, Hegele RA. A Modern Approach to Dyslipidemia. Endocr Rev. 2022; 43(4): 611–653.
  37. Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol. 2019; 112: 54–71.
  38. Le Roy T, Lécuyer E, Chassaing B, et al. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol. 2019; 17(1): 94.
  39. Moreno-Indias I, Sánchez-Alcoholado L, Pérez-Martínez P, et al. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct. 2016; 7(4): 1775–1787.
  40. Gargari G, Deon V, Taverniti V, et al. Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake. FEMS Microbiol Ecol. 2018; 94(5).
  41. Liu S, Zhao W, Liu X, et al. Metagenomic analysis of the gut microbiome in atherosclerosis patients identify cross-cohort microbial signatures and potential therapeutic target. FASEB J. 2020; 34(11): 14166–14181.
  42. Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012; 3: 1245.
  43. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017; 8(1): 845.
  44. Tuomisto S, Huhtala H, Martiskainen M, et al. Age-dependent association of gut bacteria with coronary atherosclerosis: Tampere Sudden Death Study. PLoS One. 2019; 14(8): e0221345.
  45. Nie K, Ma K, Luo W, et al. Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Front Cell Infect Microbiol. 2021; 11: 757718.
  46. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008; 105(43): 16731–16736.
  47. Ott SJ, El Mokhtari NE, Musfeldt M, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation. 2006; 113(7): 929–937.
  48. Han Y, Gong Z, Sun G, et al. Dysbiosis of Gut Microbiota in Patients With Acute Myocardial Infarction. Front Microbiol. 2021; 12: 680101.
  49. Dong C, Yang Y, Wang Y, et al. Gut microbiota combined with metabolites reveals unique features of acute myocardial infarction patients different from stable coronary artery disease. J Adv Res. 2022 [Epub ahead of print].
  50. Yin J, Liao SX, He Y, et al. Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J Am Heart Assoc. 2015; 4(11).
  51. Tan C, Wu Q, Wang H, et al. Dysbiosis of Gut Microbiota and Short-Chain Fatty Acids in Acute Ischemic Stroke and the Subsequent Risk for Poor Functional Outcomes. JPEN J Parenter Enteral Nutr. 2021; 45(3): 518–529.
  52. Zeng X, Gao X, Peng Yu, et al. Higher Risk of Stroke Is Correlated With Increased Opportunistic Pathogen Load and Reduced Levels of Butyrate-Producing Bacteria in the Gut. Front Cell Infect Microbiol. 2019; 9: 4.
  53. Pasini E, Aquilani R, Testa C, et al. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC Heart Fail. 2016; 4(3): 220–227.
  54. Amar J, Lelouvier B, Servant F, et al. Blood Microbiota Modification After Myocardial Infarction Depends Upon Low-Density Lipoprotein Cholesterol Levels. J Am Heart Assoc. 2019; 8(19): e011797.
  55. Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019; 76(3): 473–493.
  56. Violi F, Cammisotto V, Bartimoccia S, et al. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat Rev Cardiol. 2023; 20(1): 24–37.
  57. Manco M, Putignani L, Bottazzo GF. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev. 2010; 31(6): 817–844.
  58. Hug H, Mohajeri MH, La Fata G. Toll-Like Receptors: Regulators of the Immune Response in the Human Gut. Nutrients. 2018; 10(2).
  59. Muzio M, Polentarutti N, Bosisio D. Toll-like receptor family and signalling pathway. Biochem Soc Trans. 2000; 28(5): 563–566.
  60. Miele L, Giorgio V, Alberelli MA, et al. Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk. Curr Cardiol Rep. 2015; 17(12): 120.
  61. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart. 2004; 90(4): 464–470.
  62. Piepot HA, Boer C, Groeneveld AB, et al. Lipopolysaccharide impairs endothelial nitric oxide synthesis in rat renal arteries. Kidney Int. 2000; 57(6): 2502–2510.
  63. Wiedermann C, Kiechl S, Dunzendorfer S, et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease. Journal of the American College of Cardiology. 1999; 34(7): 1975–1981.
  64. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009; 9(11): 799–809.
  65. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472(7341): 57–63.
  66. Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A. 2012; 109(52): 21307–21312.
  67. Yoo W, Zieba JK, Foegeding NJ, et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine -oxide. Science. 2021; 373(6556): 813–818.
  68. Wang Z, Bergeron N, Levison BS. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019; 40(7): 583–594.
  69. Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J Am Heart Assoc. 2016; 5(2).
  70. Wang B, Qiu J, Lian J, et al. Gut Metabolite Trimethylamine-N-Oxide in Atherosclerosis: From Mechanism to Therapy. Front Cardiovasc Med. 2021; 8: 723886.
  71. Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet. 2011; 378(9792): 704–712.
  72. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013; 368(17): 1575–1584.
  73. Li X, Geng J, Zhao J, et al. Trimethylamine N-Oxide Exacerbates Cardiac Fibrosis via Activating the NLRP3 Inflammasome. Front Physiol. 2019; 10: 866.
  74. Wang G, Kong B, Shuai W, et al. 3,3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice. J Nutr Biochem. 2020; 78: 108341.
  75. Chen K, Zheng X, Feng M, et al. Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide Contributes to Cardiac Dysfunction in Western Diet-Induced Obese Mice. Front Physiol. 2017; 8: 139.
  76. Lim YJ, Sidor NA, Tonial NC, et al. Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins (Basel). 2021; 13(2).
  77. Hsu CN, Chang-Chien GP, Lin S, et al. Association of Trimethylamine, Trimethylamine N-oxide, and Dimethylamine with Cardiovascular Risk in Children with Chronic Kidney Disease. J Clin Med. 2020; 9(2).
  78. Banoglu E, Jha GG, King RS. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur J Drug Metab Pharmacokinet. 2001; 26(4): 235–240.
  79. Banoglu E, King RS. Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur J Drug Metab Pharmacokinet. 2002; 27(2): 135–140.
  80. Li Q, Zhang S, Wu QJ, et al. Serum total indoxyl sulfate levels and all-cause and cardiovascular mortality in maintenance hemodialysis patients: a prospective cohort study. BMC Nephrol. 2022; 23(1): 231.
  81. Lekawanvijit S, Adrahtas A, Kelly DJ, et al. Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur Heart J. 2010; 31(14): 1771–1779.
  82. Tumur Z, Niwa T. Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells. Am J Nephrol. 2009; 29(6): 551–557.
  83. Gao H, Liu S. Role of uremic toxin indoxyl sulfate in the progression of cardiovascular disease. Life Sci. 2017; 185: 23–29.
  84. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006; 47(2): 241–259.
  85. Shulpekova Y, Zharkova M, Tkachenko P, et al. The Role of Bile Acids in the Human Body and in the Development of Diseases. Molecules. 2022; 27(11).
  86. Khurana S, Raufman JP, Pallone TL. Bile acids regulate cardiovascular function. Clin Transl Sci. 2011; 4(3): 210–218.
  87. Mayerhofer CCK, Ueland T, Broch K, et al. Increased Secondary/Primary Bile Acid Ratio in Chronic Heart Failure. J Card Fail. 2017; 23(9): 666–671.
  88. Massafra V, Pellicciari R, Gioiello A, et al. Progress and challenges of selective Farnesoid X Receptor modulation. Pharmacol Ther. 2018; 191: 162–177.
  89. Karpale M, Käräjämäki AJ, Kummu O, et al. Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism. Br J Pharmacol. 2021; 178(12): 2461–2481.
  90. Chen S, Law CS, Grigsby CL, et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation. 2011; 124(17): 1838–1847.
  91. He J, Zhang P, Shen L, et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int J Mol Sci. 2020; 21(17).
  92. Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016; 165(6): 1332–1345.
  93. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019; 10: 277.
  94. Wu Y, Xu H, Tu X, et al. The Role of Short-Chain Fatty Acids of Gut Microbiota Origin in Hypertension. Front Microbiol. 2021; 12: 730809.
  95. Khan K, Jovanovski E, Ho HVT, et al. The effect of viscous soluble fiber on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2018; 28(1): 3–13.
  96. Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity. 2014; 40(6): 833–842.
  97. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504(7480): 446–450.
  98. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013; 341(6145): 569–573.
  99. Vaziri ND, Liu SM, Lau WL, et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One. 2014; 9(12): e114881.
  100. Pavlidou E, Fasoulas A, Mantzorou M, et al. Clinical Evidence on the Potential Beneficial Effects of Probiotics and Prebiotics in Cardiovascular Disease. Int J Mol Sci. 2022; 23(24).
  101. Sun J, Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann Med. 2015; 47(6): 430–440.
  102. Moludi J, Kafil HS, Qaisar SA, et al. Effect of probiotic supplementation along with calorie restriction on metabolic endotoxemia, and inflammation markers in coronary artery disease patients: a double blind placebo controlled randomized clinical trial. Nutr J. 2021; 20(1): 47.
  103. Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men With Stable Coronary Artery Disease. Circ Res. 2018; 123(9): 1091–1102.
  104. Wu H, Chiou J. Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients. 2021; 13(8).
  105. Grylls A, Seidler K, Neil J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed Pharmacother. 2021; 137: 111334.
  106. Guo Z, Liu XM, Zhang QX, et al. Effects of inulin on the plasma lipid profile of normolipidemic and hyperlipidemic subjects: a meta-analysis of randomized controlled trials. Clinical Lipidology. 2017; 7(2): 215–222.
  107. Mohanty D, Misra S, Mohapatra S, et al. Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience. 2018; 26: 152–160.
  108. Olas B. Probiotics, Prebiotics and Synbiotics-A Promising Strategy in Prevention and Treatment of Cardiovascular Diseases? Int J Mol Sci. 2020; 21(24).
  109. Anhê FF, Jensen BAH, Perazza LR, et al. Bacterial Postbiotics as Promising Tools to Mitigate Cardiometabolic Diseases. J Lipid Atheroscler. 2021; 10(2): 123–129.