Vol 75, No 3 (2024)
Review paper
Published online: 2024-06-06

open access

Page views 228
Article views/downloads 3
Get Citation

Connect on Social Media

Connect on Social Media

Impact of trenbolone on selected organs

Rafał Borecki1, Piotr Byczkiewicz1, Jolanta Słowikowska-Hilczer1
DOI: 10.5603/ep.99130
Pubmed: 38887114
Endokrynol Pol 2024;75(3):267-278.

Abstract

Trenbolone is a synthetic analogue of testosterone, belonging to the nandrolone group. It has both a strong anabolic effect and a limited androgenic effect (i.e. an androgen and anabolic steroid — AAS). It is used illegally by professional or amateur athletes, who want to improve their athletic performance and appearance by increasing their muscle mass. Trenbolone, like other AASs, are harmful, with 90% of users experiencing injurious side effects. It acts systemically on the body, and as such, its side effects can manifest as symptoms from different systems. Nevertheless, its popularity is increasing. This paper reviews the current state of knowledge regarding the adverse effects of trenbolone on the nervous, reproductive, immune systems and breast, muscular and adipose tissues. However, various other adverse consequences of trenbolone utilization are observed, with severe acne and gynaecomastia affecting approximately one-third of all users, as well as excessive body hair, stretch marks, hypertension and cardiac arrhythmia. The drugs are also subject to contamination, with use frequently resulting in local inflammation at the injection site, muscle adhesions and fibrosis, nerve damage or, in extreme cases, necrosis of the injection site. Additionally, due to the lack of available knowledge on the subject, many of the effects of trenbolone use remain unknown. Moreover, the fact that multiple AASs may be used simultaneously presents a significant problem in their study.

Therefore, further research is necessary to better understand the effects of AAS on the body, and to expand our currently incomplete knowledge of their functional pathways.

Article available in PDF format

View PDF Download PDF file

References

  1. Sagoe D, Molde H, Andreassen CS, et al. The global epidemiology of anabolic-androgenic steroid use: a meta-analysis and meta-regression analysis. Ann Epidemiol. 2014; 24(5): 383–398.
  2. Art. 124 ustawy z dnia 6 września 2001 r. Prawo farmaceutyczne (Dz.U.2022.2301) 2022.
  3. Parkinson AB, Evans NA. Anabolic androgenic steroids: a survey of 500 users. Med Sci Sports Exerc. 2006; 38(4): 644–651.
  4. Yarrow JF, McCoy SC, Borst SE. Tissue selectivity and potential clinical applications of trenbolone (17beta-hydroxyestra-4,9,11-trien-3-one): A potent anabolic steroid with reduced androgenic and estrogenic activity. Steroids. 2010; 75(6): 377–389.
  5. Kicman AT. Pharmacology of anabolic steroids. Br J Pharmacol. 2008; 154(3): 502–521.
  6. Elks J, Ganellin CR. The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer, New York 2014: 472.
  7. Shahidi NT. A review of the chemistry, biological action, and clinical applications of anabolic-androgenic steroids. Clin Ther. 2001; 23(9): 1355–1390.
  8. Pottier J, Cousty C, Heitzman RJ, et al. Differences in the biotransformation of a 17 beta-hydroxylated steroid, trenbolone acetate, in rat and cow. Xenobiotica. 1981; 11(7): 489–500.
  9. World Anti-Doping Code. International Standard Prohibited List 2023. WADA, Montreal 2023: 6.
  10. Bauer ER, Daxenberger A, Petri T, et al. Characterisation of the affinity of different anabolics and synthetic hormones to the human androgen receptor, human sex hormone binding globulin and to the bovine progestin receptor. APMIS. 2000; 108(12): 838–846.
  11. Smith Z, Johnson B. Mechanisms of steroidal implants to improve beef cattle growth: a review. J Appl Anim Res. 2020; 48(1): 133–141.
  12. Selk-Ghaffari M, Shab-Bidar S, Halabchi F. The Prevalence of Anabolic-Androgenic Steroid Misuse in Iranian Athletes: A Systematic Review and Meta-Analysis. Iran J Public Health. 2021; 50(6): 1120–1134.
  13. Geraline CL, Erinoff L. Anabolic steroid abuse. NIDA Res Monogr. 1990; 102: 1–241.
  14. Ma F, Liu D. 17β-trenbolone, an anabolic-androgenic steroid as well as an environmental hormone, contributes to neurodegeneration. Toxicol Appl Pharmacol. 2015; 282(1): 68–76.
  15. Le Grevès P, Huang W, Johansson P, et al. Effects of an anabolic-androgenic steroid on the regulation of the NMDA receptor NR1, NR2A and NR2B subunit mRNAs in brain regions of the male rat. Neurosci Lett. 1997; 226(1): 61–64.
  16. Hallberg M, Johansson P, Kindlundh AM, et al. Anabolic-androgenic steroids affect the content of substance P and substance P(1-7) in the rat brain. Peptides. 2000; 21(6): 845–852.
  17. Hallberg M. Impact of anabolic androgenic steroids on neuropeptide systems. Mini Rev Med Chem. 2011; 11(5): 399–408.
  18. Zelleroth S, Nylander E, Nyberg F, et al. Toxic Impact of Anabolic Androgenic Steroids in Primary Rat Cortical Cell Cultures. Neuroscience. 2019; 397: 172–183.
  19. Basile JR, Binmadi NO, Zhou H, et al. Supraphysiological doses of performance enhancing anabolic-androgenic steroids exert direct toxic effects on neuron-like cells. Front Cell Neurosci. 2013; 7: 69.
  20. Bjørnebekk A, Westlye LT, Walhovd KB, et al. Structural Brain Imaging of Long-Term Anabolic-Androgenic Steroid Users and Nonusing Weightlifters. Biol Psychiatry. 2017; 82(4): 294–302.
  21. Caraci F, Pistarà V, Corsaro A, et al. Neurotoxic properties of the anabolic androgenic steroids nandrolone and methandrostenolone in primary neuronal cultures. J Neurosci Res. 2011; 89(4): 592–600.
  22. Cunningham RL, Giuffrida A, Roberts JL. Androgens induce dopaminergic neurotoxicity via caspase-3-dependent activation of protein kinase Cdelta. Endocrinology. 2009; 150(12): 5539–5548.
  23. Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017; 24(8): 1380–1389.
  24. Orlando R, Caruso A, Molinaro G, et al. Nanomolar concentrations of anabolic-androgenic steroids amplify excitotoxic neuronal death in mixed mouse cortical cultures. Brain Res. 2007; 1165: 21–29.
  25. Lehmann ML, Weigel TK, Elkahloun AG, et al. Chronic social defeat reduces myelination in the mouse medial prefrontal cortex. Sci Rep. 2017; 7: 46548.
  26. Zhang S, Zhang S, Zhu D, et al. Effects of 17β-trenbolone exposure on sex hormone synthesis and social behaviours in adolescent mice. Chemosphere. 2020; 245: 125679.
  27. Khoodoruth MA, Khan AA. Anabolic steroids-induced delirium: A case report. Medicine (Baltimore). 2020; 99(33): e21639.
  28. Trenton AJ, Currier GW. Behavioural manifestations of anabolic steroid use. CNS Drugs. 2005; 19(7): 571–595.
  29. Soria Lopez JA, González HM, Léger GC. Alzheimer's disease. Handb Clin Neurol. 2019; 167: 231–255.
  30. Bondi MW, Edmonds EC, Salmon DP. Alzheimer's Disease: Past, Present, and Future. J Int Neuropsychol Soc. 2017; 23(9-10): 818–831.
  31. Heffernan T, Battersby L, Bishop P, et al. Everyday memory deficits associated with anabolic-androgenic steroid use in regular gymnasium users. Open Psychiatr J. 2015; 9: 1–6.
  32. Baez MV, Cercato MC, Jerusalinsky DA. NMDA Receptor Subunits Change after Synaptic Plasticity Induction and Learning and Memory Acquisition. Neural Plast. 2018; 2018: 5093048.
  33. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013; 14(6): 383–400.
  34. Sucher NJ, Awobuluyi M, Choi YB, et al. NMDA receptors: from genes to channels. Trends Pharmacol Sci. 1996; 17(10): 348–355.
  35. Binvignat O, Olloquequi J. Excitotoxicity as a Target Against Neurodegenerative Processes. Curr Pharm Des. 2020; 26(12): 1251–1262.
  36. Yashiro K, Philpot BD. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology. 2008; 55(7): 1081–1094.
  37. Sanz-Clemente A, Nicoll RA, Roche KW. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist. 2013; 19(1): 62–75.
  38. Lu CL, Shaikh MB, Siegel A. Role of NMDA receptors in hypothalamic facilitation of feline defensive rage elicited from the midbrain periaqueductal gray. Brain Res. 1992; 581(1): 123–132.
  39. Flood JF, Morley JE, Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci U S A. 1992; 89(5): 1567–1571.
  40. McGinnis MY. Anabolic androgenic steroids and aggression: studies using animal models. Ann N Y Acad Sci. 2004; 1036: 399–415.
  41. Piatkowski TM, Neumann DL, Dunn M. 'My mind pretty much went to mush': A qualitative exploration of trenbolone in the performance and image enhancing drug community. Drug Alcohol Rev. 2023; 42(6): 1566–1576.
  42. Penatti CAA, Costine BA, Porter DM, et al. Anabolic androgenic steroids and forebrain GABAergic transmission. Neuroscience. 2006; 138(3): 793–799.
  43. Henderson L, Jorge J. Steroid modulation of GABAA receptors:from molecular mechanisms to CNS roles in reproduction, dysfunction and drug abuse. Adv Mol Cell Biol. 2004: 219–250.
  44. de Souza GL, Hallak J. Anabolic steroids and male infertility: a comprehensive review. BJU Int. 2011; 108(11): 1860–1865.
  45. Sjöqvist F, Garle M, Rane A. Use of doping agents, particularly anabolic steroids, in sports and society. Lancet. 2008; 371(9627): 1872–1882.
  46. Cossu G, Borello U. Wnt signaling and the activation of myogenesis in mammals. EMBO J. 1999; 18(24): 6867–6872.
  47. Pelton LM, Maris SA, Loseke J. The Effects of Anabolic-Androgenic Steroids on Gene Expression in Skeletal Muscle: A Systematic Review. Int J Exerc Sci. 2023; 16(3): 53–82.
  48. Brack AS, Conboy IM, Conboy MJ, et al. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell. 2008; 2(1): 50–59.
  49. Zhao JX, Hu J, Zhu MJ, et al. Trenbolone enhances myogenic differentiation by enhancing β-catenin signaling in muscle-derived stem cells of cattle. Domest Anim Endocrinol. 2011; 40(4): 222–229.
  50. Yan Xu, Zhu MJ, Xu W, et al. Up-regulation of Toll-like receptor 4/nuclear factor-kappaB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinology. 2010; 151(1): 380–387.
  51. Taurin S, Sandbo N, Qin Y, et al. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem. 2006; 281(15): 9971–9976.
  52. Altuwaijri S, Lee DK, Chuang KH, et al. Correction to: Androgen receptor regulates expression of skeletal muscle-specific proteins and muscle cell types. Endocrine. 2020; 69(2): 474–475.
  53. Wilson VS, Lambright C, Ostby J, et al. In vitro and in vivo effects of 17beta-trenbolone: a feedlot effluent contaminant. Toxicol Sci. 2002; 70(2): 202–211.
  54. Johnson BJ, Anderson PT, Meiske JC, et al. Effect of a combined trenbolone acetate and estradiol implant on feedlot performance, carcass characteristics, and carcass composition of feedlot steers. J Anim Sci. 1996; 74(2): 363–371.
  55. Samber JA, Tatum JD, Wray MI, et al. Implant program effects on performance and carcass quality of steer calves finished for 212 days. J Anim Sci. 1996; 74(7): 1470–1476.
  56. Liu XH, Wu Y, Yao S, et al. Androgens up-regulate transcription of the Notch inhibitor Numb in C2C12 myoblasts via Wnt/β-catenin signaling to T cell factor elements in the Numb promoter. J Biol Chem. 2013; 288(25): 17990–17998.
  57. Katoh M, Katoh M. NUMB is a break of WNT-Notch signaling cycle. Int J Mol Med. 2006; 18(3): 517–521.
  58. Cheng X, Huber TL, Chen VC, et al. Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Development. 2008; 135(20): 3447–3458.
  59. Gulino A, Di Marcotullio L, Screpanti I. The multiple functions of Numb. Exp Cell Res. 2010; 316(6): 900–906.
  60. Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell. 2002; 3(3): 397–409.
  61. Jory A, Le Roux I, Gayraud-Morel B, et al. Numb promotes an increase in skeletal muscle progenitor cells in the embryonic somite. Stem Cells. 2009; 27(11): 2769–2780.
  62. Liu XH, Yao S, Levine AC, et al. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts. J Androl. 2012; 33(6): 1216–1223.
  63. Foradori CD, Weiser MJ, Handa RJ. Non-genomic actions of androgens. Front Neuroendocrinol. 2008; 29(2): 169–181.
  64. Benten WP, Lieberherr M, Stamm O, et al. Testosterone signaling through internalizable surface receptors in androgen receptor-free macrophages. Mol Biol Cell. 1999; 10(10): 3113–3123.
  65. Feldman JL, Stockdale FE. Skeletal muscle satellite cell diversity: satellite cells form fibers of different types in cell culture. Dev Biol. 1991; 143(2): 320–334.
  66. Archacka K, Kowalski K, Brzóska E. [Are satellite cells stem cells?]. Postepy Biochem. 2013; 59(2): 205–218.
  67. Kamanga-Sollo E, Pampusch MS, Xi G, et al. IGF-I mRNA levels in bovine satellite cell cultures: effects of fusion and anabolic steroid treatment. J Cell Physiol. 2004; 201(2): 181–189.
  68. Fu R, Liu J, Fan J, et al. Novel evidence that testosterone promotes cell proliferation and differentiation via G protein-coupled receptors in the rat L6 skeletal muscle myoblast cell line. J Cell Physiol. 2012; 227(1): 98–107.
  69. Chin ER. The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc Nutr Soc. 2004; 63(2): 279–286.
  70. Rahman F, Christian HC. Non-classical actions of testosterone: an update. Trends Endocrinol Metab. 2007; 18(10): 371–378.
  71. Mader TL, Kreikemeier WM. Effects of growth-promoting agents and season on blood metabolites and body temperature in heifers. J Anim Sci. 2006; 84(4): 1030–1037.
  72. Dunn JD, Johnson BJ, Kayser JP, et al. Effects of flax supplementation and a combined trenbolone acetate and estradiol implant on circulating insulin-like growth factor-I and muscle insulin-like growth factor-I messenger RNA levels in beef cattle. J Anim Sci. 2003; 81(12): 3028–3034.
  73. Lee CY, Henricks DM, Skelley GC, et al. Growth and hormonal response of intact and castrate male cattle to trenbolone acetate and estradiol. J Anim Sci. 1990; 68(9): 2682–2689.
  74. Reichhardt CC, Ahmadpour A, Christensen RG, et al. Understanding the influence of trenbolone acetate and polyamines on proliferation of bovine satellite cells. Domest Anim Endocrinol. 2021; 74: 106479.
  75. Kim JH, Han GC, Seo JY, et al. Sex hormones establish a reserve pool of adult muscle stem cells. Nat Cell Biol. 2016; 18(9): 930–940.
  76. Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids. 2023; 199: 109306.
  77. Johnson BJ, White ME, Hathaway MR, et al. Effect of a combined trenbolone acetate and estradiol implant on steady-state IGF-I mRNA concentrations in the liver of wethers and the longissimus muscle of steers. J Anim Sci. 1998; 76(2): 491–497.
  78. Lee CY, Lee HP, Jeong JH, et al. Effects of restricted feeding, low-energy diet, and implantation of trenbolone acetate plus estradiol on growth, carcass traits, and circulating concentrations of insulin-like growth factor (IGF)-I and IGF-binding protein-3 in finishing barrows. J Anim Sci. 2002; 80(1): 84–93.
  79. Johnson BJ, Hathaway MR, Anderson PT, et al. Stimulation of circulating insulin-like growth factor I (IGF-I) and insulin-like growth factor binding proteins (IGFBP) due to administration of a combined trenbolone acetate and estradiol implant in feedlot cattle. J Anim Sci. 1996; 74(2): 372–379.
  80. Barbonetti A, D'Andrea S, Francavilla S. Testosterone replacement therapy. Andrology. 2020; 8(6): 1551–1566.
  81. Esteve Ràfols M. Adipose tissue: cell heterogeneity and functional diversity. Endocrinol Nutr. 2014; 61(2): 100–112.
  82. Blouin K, Nadeau M, Perreault M, et al. Effects of androgens on adipocyte differentiation and adipose tissue explant metabolism in men and women. Clin Endocrinol (Oxf). 2010; 72(2): 176–188.
  83. Gentile MA, Nantermet PV, Vogel RL, et al. Androgen-mediated improvement of body composition and muscle function involves a novel early transcriptional program including IGF1, mechano growth factor, and induction of {beta}-catenin. J Mol Endocrinol. 2010; 44(1): 55–73.
  84. Bruns KW, Pritchard RH, Boggs DL. The effect of stage of growth and implant exposure on performance and carcass composition in steers. J Anim Sci. 2005; 83(1): 108–116.
  85. Donner DG, Beck BR, Bulmer AC, et al. Improvements in body composition, cardiometabolic risk factors and insulin sensitivity with trenbolone in normogonadic rats. Steroids. 2015; 94: 60–69.
  86. Foutz CP, Dolezal HG, Gardner TL, et al. Anabolic implant effects on steer performance, carcass traits, subprimal yields, and longissimus muscle properties. J Anim Sci. 1997; 75(5): 1256–1265.
  87. Reiter M, Walf VM, Christians A, et al. Modification of mRNA expression after treatment with anabolic agents and the usefulness for gene expression-biomarkers. Anal Chim Acta. 2007; 586(1-2): 73–81.
  88. Rowe PJ, Comhaire FH, Hargreave TB. et al.. WHO Manual for the Standardized Investigation and Diagnosis of the Infertile Male. Cambridge University Press, Cambridge 2000.
  89. Dohle GR, Smit M, Weber RFA. Androgens and male fertility. World J Urol. 2003; 21(5): 341–345.
  90. Corona G, Goulis DG, Huhtaniemi I, et al. European Academy of Andrology (EAA) guidelines on investigation, treatment and monitoring of functional hypogonadism in males: Endorsing organization: European Society of Endocrinology. Andrology. 2020; 8(5): 970–987.
  91. Gazvani MR, Buckett W, Luckas MJ, et al. Conservative management of azoospermia following steroid abuse. Hum Reprod. 1997; 12(8): 1706–1708.
  92. Ledesma BR, Weber A, Venigalla G, et al. Fertility outcomes in men with prior history of anabolic steroid use. Fertil Steril. 2023; 120(6): 1203–1209.
  93. Grokett BH, Ahmad N, Warren DW. The effects of an anabolic steroid (oxandrolone) on reproductive development in the male rat. Acta Endocrinol (Copenh). 1992; 126(2): 173–178.
  94. Moretti E, Collodel G, La Marca A, et al. Structural sperm and aneuploidies studies in a case of spermatogenesis recovery after the use of androgenic anabolic steroids. J Assist Reprod Genet. 2007; 24(5): 195–198.
  95. Shokri S, Aitken RJ, Abdolvahhabi M, et al. Exercise and supraphysiological dose of nandrolone decanoate increase apoptosis in spermatogenic cells. Basic Clin Pharmacol Toxicol. 2010; 106(4): 324–330.
  96. Turek P, Williams R, Gilbaugh J, et al. The Reversibility of Anabolic Steroid-Induced Azoospermia. J Urology. 1995: 1628–1630.
  97. Sretenovic J, Joksimovic Jovic J, Srejovic I, et al. Morphometric analysis and redox state of the testicles in nandrolone decanoate and swimming treated adult male rats. Basic Clin Androl. 2021; 31(1): 17.
  98. Barone R, Pitruzzella A, Marino Gammazza A, et al. Nandrolone decanoate interferes with testosterone biosynthesis altering blood-testis barrier components. J Cell Mol Med. 2017; 21(8): 1636–1647.
  99. Whitaker DL, Geyer-Kim G, Kim ED. Anabolic steroid misuse and male infertility: management and strategies to improve patient awareness. Expert Rev Endocrinol Metab. 2021; 16(3): 109–122.
  100. Menon DK. Successful treatment of anabolic steroid-induced azoospermia with human chorionic gonadotropin and human menopausal gonadotropin. Fertil Steril. 2003; 79 Suppl 3: 1659–1661.
  101. Rizzuti A, Alvarenga C, Stocker G, et al. Early Pharmacologic Approaches to Avert Anabolic Steroid-induced Male Infertility: A Narrative Review. Clin Ther. 2023; 45(11): e234–e241.
  102. Guddat S, Thevis M, Kapron J, et al. Metabolism of anabolic androgenic steroids. Clin Chem. 1996; 42(7): 1001–1020.
  103. Ruan W, Monaco ME, Kleinberg DL. Progesterone stimulates mammary gland ductal morphogenesis by synergizing with and enhancing insulin-like growth factor-I action. Endocrinology. 2005; 146(3): 1170–1178.
  104. Fortunato RS, Rosenthal D, Carvalho DP. [Abuse of anabolic steroids and its impact on thyroid function]. Arq Bras Endocrinol Metabol. 2007; 51(9): 1417–1424.
  105. Sharma S, Meena K, Tabiyad A, et al. Correlation between prolactin, thyroid, LH, FSH, estradiol and progesterone in the infertile women. Int J Reprod Contracept Obstet Gynecol. 2023; 12(4): 1017–1022.
  106. Gill S, Peston D, Vonderhaar BK, et al. Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study. J Clin Pathol. 2001; 54(12): 956–960.
  107. Yada T, Nakanishi T. Interaction between endocrine and immune systems in fish. Int Rev Cytol. 2002; 220: 35–92.
  108. Verburg-van Ke, Stolte HH, Metz JR, et al. Neuroendocrine-immune interactions in teleost fish. Fish Neuroendocrinol. 2009; 28: 313–364.
  109. Chaves-Pozo E, García-Ayala A, Cabas I. Effects of Sex Steroids on Fish Leukocytes. Biology (Basel). 2018; 7(1).
  110. Sakiani S, Olsen NJ, Kovacs WJ. Gonadal steroids and humoral immunity. Nat Rev Endocrinol. 2013; 9(1): 56–62.
  111. LoBue SA, Goldman A, Giovane RA, et al. Recurrent Herpes Zoster Ophthalmicus Preceded by Anabolic Steroids and High-Dose L-Arginine. Case Rep Ophthalmol Med. 2020; 2020: 8861892.
  112. Althobaiti YS, Alzahrani MS, Alhumayani SM, et al. Potential Association between the Use of Anabolic Steroids and COVID-19 Infection. Healthcare (Basel). 2022; 10(2).
  113. Hoffmann JP, Liu JA, Seddu K, et al. Sex hormone signaling and regulation of immune function. Immunity. 2023; 56(11): 2472–2491.
  114. Grossman CJ, Sholiton LJ, Roselle GA. Estradiol regulation of thymic lymphocyte function in the rat: mediation by serum thymic factors. J Steroid Biochem. 1982; 16(5): 683–690.
  115. Mendenhall CL, Grossman CJ, Roselle GA, et al. Phytohemagglutinin skin test responses to evaluate in vivo cellular immune function in rats. Proc Soc Exp Biol Med. 1989; 190(1): 117–120.
  116. Mendenhall CL, Grossman CJ, Roselle GA, et al. Anabolic steroid effects on immune function: differences between analogues. J Steroid Biochem Mol Biol. 1990; 37(1): 71–76.
  117. Sthoeger ZM, Chiorazzi N, Lahita RG. Regulation of the immune response by sex hormones. I. In vitro effects of estradiol and testosterone on pokeweed mitogen-induced human B cell differentiation. J Immunol. 1988; 141(1): 91–98.
  118. Ansar Ahmed S, Dauphinee MJ, Talal N. Effects of short-term administration of sex hormones on normal and autoimmune mice. J Immunol. 1985; 134(1): 204–210.
  119. D'Ascenzo S, Millimaggi D, Di Massimo C, et al. Detrimental effects of anabolic steroids on human endothelial cells. Toxicol Lett. 2007; 169(2): 129–136.
  120. Oh-hora M. Calcium signaling in the development and function of T-lineage cells. Immunol Rev. 2009; 231(1): 210–224.
  121. Li QJ, Dinner AR, Qi S, et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat Immunol. 2004; 5(8): 791–799.
  122. Kuhns MS, Davis MM, Garcia KC. Deconstructing the form and function of the TCR/CD3 complex. Immunity. 2006; 24(2): 133–139.
  123. Hermann-Kleiter N, Baier G. NFAT pulls the strings during CD4+ T helper cell effector functions. Blood. 2010; 115(15): 2989–2997.
  124. Brenu EW, McNaughton L, Marshall-Gradisnik SM. Is there a potential immune dysfunction with anabolic androgenic steroid use?: A review. Mini Rev Med Chem. 2011; 11(5): 438–445.
  125. Massart S, Redivo B, Flamion E, et al. The trenbolone acetate affects the immune system in rainbow trout, Oncorhynchus mykiss. Aquat Toxicol. 2015; 163: 109–120.
  126. Scholz S, Kordes C, Hamann J, et al. Induction of vitellogenin in vivo and in vitro in the model teleost medaka (Oryzias latipes): comparison of gene expression and protein levels. Mar Environ Res. 2004; 57(3): 235–244.
  127. Fastrez J. Phage lysozymes. EXS. 1996; 75: 35–64.
  128. Rich JD, Dickinson BP, Feller A, et al. Abscess related to anabolic-androgenic steroid injection. Med Sci Sports Exerc. 1999; 31(2): 207–209.
  129. Friedman Or, Arad E, Ben Amotz O. Body Builder's Nightmare: Black Market Steroid Injection Gone Wrong: a Case Report. Plast Reconstr Surg Glob Open. 2016; 4(9): e1040.