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containing more muscle tissue. In such cases, trenbo-
lone was administered to livestock as a subcutaneous 
implant with a slow release time.

Since the 1980s, the use of AASs, and thus trenbo-
lone, has become more popular in among athletes in 
Western societies. A few decades ago, most users were 
believed to be professional athletes; however, this has 
since changed dramatically, with as many as 70–80% of 
AAS users now being amateur athletes [1, 3, 6]. Further-
more, studies indicate a growing tendency in the use 
of these substances in developed countries, with most 
of users commencing “steroid cycles” at a median age 
of around 20 years [3].

Structure and chemical characteristics

Trenbolone (Fig. 1) is a synthetic analogue of testos-
terone, belonging to the nandrolone group [7, 8]. 
Compared to testosterone, this group is characterised 
by the demethylation of the carbon at the C19 position. 
This augments the anabolic effect of nandrolones, while 
also simultaneously limiting their androgenic effect on 
the body [3, 9]. 

After entering the mammalian body, trenbolone is 
rapidly hydrolysed to 17-b-trenbolone (17b-hydroxyes-
tra-4,9,11-trien-3-one) [10]. This metabolite is officially 

Introduction

Anabolic-androgenic steroids (AAS) are among the most 
dangerous substances commonly used in Western so-
cieties. The global lifetime prevalence rate obtained in 
2014 was 3.3%, with the rate being four times higher 
for men than for women [1]. In most countries, ac-
cess to AASs is unrestricted, either through numerous 
websites or illegal sales by private individuals, often in 
sports centres.

Under Polish law, limited possession of such sub-
stances in undetermined quantities for personal use 
is not illegal [2]. As many as 70–80% of AAS users are 
amateur level athletes, who primarily want to improve 
their appearance by increasing their muscle mass, 
or their athletic performance [3]. Worryingly, many 
AAS users lack adequate medical knowledge and use 
the substances without any medical supervision. In-
deed, more than 90% of users have been found to ex-
perience injurious side effects [3].

One of the most potent [4] and commonly-used 
substances [3] is trenbolone, a steroidal analogue of 
testosterone. Trenbolone was introduced to the market 
in the 1970s, when it was used in the agri-food indus-
try as a growth promoter for livestock in the USA [5]. 
The cattle farmers used it to obtain defatted animal meat 
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Abstract 
Trenbolone is a synthetic analogue of testosterone, belonging to the nandrolone group. It has both a strong anabolic effect and a limited 
androgenic effect (i.e. an androgen and anabolic steroid — AAS). It is used illegally by professional or amateur athletes, who want to 
improve their athletic performance and appearance by increasing their muscle mass. Trenbolone, like other AASs, are harmful, with 90% 
of users experiencing injurious side effects. It acts systemically on the body, and as such, its side effects can manifest as symptoms from 
different systems. Nevertheless, its popularity is increasing. This paper reviews the current state of knowledge regarding the adverse 
effects of trenbolone on the nervous, reproductive, immune systems and breast, muscular and adipose tissues. However, various other 
adverse consequences of trenbolone utilization are observed, with severe acne and gynaecomastia affecting approximately one-third of 
all users, as well as excessive body hair, stretch marks, hypertension and cardiac arrhythmia. The drugs are also subject to contamina-
tion, with use frequently resulting in local inflammation at the injection site, muscle adhesions and fibrosis, nerve damage or, in extreme 
cases, necrosis of the injection site. Additionally, due to the lack of available knowledge on the subject, many of the effects of trenbolone 
use remain unknown. Moreover, the fact that multiple AASs may be used simultaneously presents a significant problem in their study. 
Therefore, further research is necessary to better understand the effects of AAS on the body, and to expand our currently incomplete 
knowledge of their functional pathways. (Endokrynol Pol 2024; 75 (3): 267–278)
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[18]. It is suspected that there is a link between the in-
duction of pro-apoptotic processes caused by this agent 
[18-22] and a reduction in viability, as well as an increase 
in toxicity to central nervous system cells. The induction 
of apoptosis is believed to be triggered the activation 
of both caspase 3 (CASP3) and caspase 7 (CASP7) by 
trenbolone, which can occur even at low doses [18]. 
Both caspases belong to a group of 12 serine proteases 
whose function is intrinsically linked to programmed 
cell death, and are among those known as apoptosis 
executors [23, 24]. Hence, it is believed that the observed 
decrease in neuronal abundance in the brain and thus 
its volume, may be due to the activation of these cas-
pases by trenbolone. 

Furthermore, trenbolone use has been associated 
with decreased mitochondrial activity and elevated 
blood lactate dehydrogenase (LDH) levels, indicating 
general damage to cells throughout the body. This 
was found to be accompanied by chromatin conden-
sation and nuclear fragmentation in the structure of 
brain cells, which may reflect the damage occurring in 
the cells and the occurrence of apoptosis [14]. The ef-
fects in question depended on the dose and duration of 
trenbolone use, with even nano-molar concentrations 
increasing the risk of excitotoxic cell death in mouse 
cortical cultures [24].

These cytotoxic effects occurring in both animals 
and cell cultures could possibly be responsible for 
the behavioural changes observed in users of AASs, such 
as trenbolone. These included disturbances in parts of 
the central nervous system, particularly those concern-
ing cognitive function, learning efficiency and visuo-
spatial memory [3]. Furthermore, specific changes were 
noted in the medial prefrontal cortex (mPFC) region, 
which plays a key role in the biochemical stress axis in 
the brain [25, 26]. The region was found to manifest 
changes in oligodendrocyte differentiation, translating 
into alterations in the formation of mouse myelin basic 
protein [26]. These changes have been correlated with 
characteristic behavioural patterns in mice, such as 
disorders in establishing social relationships and high 
levels of anxiety [26]. Similar disturbances are also ob-
served in trenbolone users [27, 28]. 

A separate issue is the effect of trenbolone on amy-
loid plaque formation processes. Studies on a rat model 
found trenbolone use to reduce the amount of the pro-
tein presenilin 1 (PS1), involved in the activity of the en-
zyme g-secretase, which is connected to the formation 
of abnormal protein-Ab42. The formation of this abnor-
mal protein is directly proportional to the trenbolone 
dose taken, and the highest amount was observed in 
the hippocampus [14]. This protein is responsible for 
the formation of senile plaques and shows strong neu-
rotoxic effects, both from the larger agglomerations of 

banned in sports and figures on the World Anti-Dop-
ing Association (WADA) list [11]. 17b-trenbolone is 
a potent mammalian androgen receptor (AR) agonist 
comparable to 5a-dihydrotestosterone (DHT), which 
is considered the most biologically active metabolite 
of testosterone [4, 12]. However, due to the presence 
of a 3-oxotriene structure in its formation [10], it is 
not a substrate for the enzyme 5-alpha-reductase or 
aromatase [4]. Due to its lack of aromatisation to estro-
gens, trenbolone is more androgenic than nandrolone, 
another potent testosterone analogue [7].

Side effects

Studies indicate that as many as 90% of users experience 
a wide array of side effects on various organs, which 
creates a significant issue for public health institutions 
on a global scale. Its perceived side effects are so serious 
that it has been placed on the USA register of danger-
ous substances [13].

Effects on nervous tissue
An important biochemical characteristic of trenbolone 
is its structure. It contains a sterane core, and is thus 
classified as a lipophilic compound [7]. It is thus able to 
penetrate the blood-brain barrier [7, 14] and exert a po-
tential effect on the central nervous system. A number 
of studies have found AAS [15–17], and hence trenbo-
lone, to influence numerous neurochemical systems 
and receptors in rodent brains, resulting in a range 
of somatic symptoms and changes in the behavioural 
patterns of the studied animals. While it is possible that 
similar effects might be observed on human neural tis-
sue, these have yet to be confirmed.

One of the most severe impacts of trenbolone is its 
influence on the cerebral cortex: long-term use of this 
agent has been shown to reduce its volume in rats, 
which implies that brain tissue atrophy may take place 

Figure 1. Trenbolone (C11H22O2) — structural formula
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the protein and the smaller oligomers and protofibrils 
surrounding them. The structures modify the curvature 
of neuronal cells and distort them, which can affect 
neurotransmission along their length and disrupt 
the transmission of neural signals through neuronal 
synapses [29]. A similar polypeptide has been found to 
accumulate in other neurodegenerative diseases such 
as Alzheimer’s disease [29]. The formation of protein 
deposits can be correlated with symptoms from the hip-
pocampus, which include impaired multiple memory 
function [30]. Such memory deficits are also observed 
in trenbolone users, and mainly take the form of deficits 
in everyday memory [31].

Another observed activity of trenbolone in the cen-
tral nervous system is its effect on ionotropic N-meth-
yl-D-aspartate receptors (NMDARs), which are hetero-
tetramers consisting of two obligatory GluN1 subunits, 
and two GluN2 or GluN3 [32, 33]. All subunits can be 
encoded by different genes and can be formed by alter-
native splicing. It has been found that these components 
can combine in as many as 60 combinations that can fit  
NMDARs [32]. The fact that changes in the composition 
of the subunits in the receptor can affect the biochemi-
cal activity of NMDARs [34, 35] and that the expression 
of specific subunits is dynamic and can fluctuate with 
time [36, 37] may be of importance. 

Taking testosterone analogues such as trenbo-
lone has been shown to modulate subunit composition 
and thus decrease the formation of mRNA encoding 
the GluN2 subunit in the hippocampus and hypo-
thalamus. Moreover, studies on rat models have found 
usage to be associated with a reduction in the overall 
amount of NMDARs, particularly in the hypothalamus 
and hippocampus [15]. In both the hypothalamus 
and hippocampus, NMDARs have important roles in 
brain function. In the hypothalamus, for instance, they 
are responsible for aggression [38], whereas in the hip-
pocampus they are responsible for personal memory, 
and their disruption has been implicated as a possible 
cause of epileptic disorders [39]. 

As mentioned earlier, changing the proportion of 
individual subunits can affect the function of NMDARs. 
In the case of the hypothalamus, such alterations may 
be responsible for the aggressive behaviours reported 
abundantly in animal research [40]. In human stud-
ies, trenbolone users also reported aggression as one 
of the most perceived side effects [41]. A decrease in 
the number of receptors in the hippocampus [15] is 
also likely to affect memory deficits in users; however, 
these may arise through a different pathway [31].

Gamma-amino butyric acid (GABA) receptors are 
present in the central nervous system and their func-
tion is significantly affected by AASs such as trenbolone. 
Studies suggest that GABA receptors may be sensitive 

to natural sex steroids. Their influence may manifest as 
specific behavioural changes during sexual maturation 
in users who are experiencing hormonal dysregulation 
[42, 43]. These hormones lead to changes in the expres-
sion and function of GABA receptors, such as modifica-
tion of neuronal transmission, its allosteric modulation 
and the activation and sensitisation of receptors [43]. 
GABA type A (GABAA) receptors in the forebrain, 
specifically in regions such as the medial preoptic area 
(mPOA), ventromedial nucleus accumbens (VMN) 
and medial amygdala (MeA), are thought to influ-
ence feelings of anxiety, aggression and sexual desire 
in mammals [43]; all have been reported to be altered 
in AAS users [3, 25–28, 41], which may also result from 
the modification of their receptors by trenbolone.

Effects on muscle tissue
The most commonly-reported motivation for beginning 
AAS use is the desire to obtain a muscular, proportional 
and aesthetic physique in the shortest possible time 
[3]. However, some athletes training for a specific 
sport may turn to AASs to improve their own perfor-
mance or enhance their appearance (e.g. professional 
bodybuilders) [3]. 

Trenbolone exhibits one of the highest anabol-
ic-androgenic ratios, and is therefore one of the most 
potent agents for stimulating muscular development 
[44]. Such an effect is called anabolism, a state in which 
nitrogen is retained in lean body mass by stimulating 
the synthesis of new proteins and/or inhibiting the deg-
radation of proteins already present. It promotes an in-
crease in muscle protein synthesis and collagen fibres, 
and an upsurge in bone metabolism [45]. 

Muscle hypertrophy, i.e. an increase in the size 
and thus volume of muscle fibres, is the leading desired 
effect of trenbolone use. Unfortunately, the exact mech-
anisms of this effect have not been fully characterised. 
Studies have observed that hypertrophy occurs through 
several pathways induced by androgens such as 
trenbolone. The first of these, known for many years 
as the genomic, or classical, pathway (Fig. 2), occurs 
through the anabolic agent binding to the cytosolic 
AR; in such cases, trenbolone has three times higher 
affinity than testosterone. This results in the transloca-
tion of the agent and the bound AR into the nucleus 
of the muscle cell, with movement being dependent 
on the dose of the attached agent. Finally, in the cell 
nucleus, the androgen and receptor combine with 
chromosomal DNA, at sites called androgen response 
elements (AREs), in the form of homodimers. These 
promote the transcription of specific genes and sub-
sequent translation of proanabolic proteins [4]. This 
pathway is slower, and its effects can manifest over 
a longer period of time. 
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In contrast, the second biochemical/molecular path-
way also involves the AR, but the anabolic effects that 
occur are mediated by the Wnt/ b-catenin and Notch 
pathways (Fig. 2). Wnt signalling is an extremely 
important pathway, associated with a set of glyco-
proteins. Its purpose is to regulate myogenesis, both 
during embryogenesis and at maturity. It promotes 
the differentiation of stem cells into myogenic cells 
and, if required, the repair of damaged muscle tissues 
[46–48]. First, b-catenin acts as a transcriptional effec-
tor. The molecule binds to the transcriptional repressor 
Tcf2/Lef in the nucleus of the muscle cell, converting it 
into transcriptional activators that induce proanabolic 
genes acting as targets of the Wnt pathway. Several 
studies indicate that the administration of trenbolone 
increases b-catenin levels and thus Wnt pathway levels 
[49–51]. This is likely due to the negative effects of tren-
bolone on glycogen synthase kinase 3 (GSK3), another 
component of this molecular system. The kinase is 
related to the Notch pathway, which inhibits the Wnt 
pathway, and marks b-catenin for intracellular degra-

dation by phosphorylation; in the absence of GSK3, 
the amount of b-catenin will increase and perform its 
role as a translation factor [4]. 

Both the Notch pathway and the Wnt-related 
pathway share very similar cellular functions in 
regulating myogenesis; however, Notch pathway is 
Wnt-related pathway antagonist and additionally 
promotes satellite cell activation and differentiation 
[52–55]. Both pathways constitute an integrated mo-
lecular system in which each component interacts with 
the other. The exact interactions between the pathways 
are not fully understood, but the Numb molecule, 
which inhibits the Notch pathway and participates 
in myocyte cell gene recombination, is thought to act 
as a signalling molecule [55–61]. 

Nandrolone or trenbolone administration results 
in increased levels of b-catenin, and thus its greater 
attachment to the regulatory sites of the Numb gene 
promoter (at the Tcf site); this causes an increase in 
the expression of the gene encoding Numb, and thus 
greater Numb mRNA/protein levels in the nuclear 

Figure 2. Skeletal muscle hypertrophy. AR — androgen receptor; ARE — androgen response elements; b-c — b-catenin; FGF — fibroblast 
growth factor; GPCR — G protein-related receptor; GSK-1 — glycogen synthase kinase 1; IGF-1 — insulin-like growth factor 1; 
MC — myosatellite cell; NICD — Notch intracellular domain; Notch — Notch signalling pathway; Tcf2/Lef — transcriptional 
repressors/activators; Wnt — Wnt signalling pathway



271

Endokrynologia Polska 2024; 75 (3)

R
EV

IE
W

and cytosolic fractions [62–64]. This probably occurs 
through conformational stabilisation of the Numb pro-
tein; this is made possible by reducing the concentra-
tion of the MDM2 molecule, related to the p53 protein, 
and altering the level of the Musashi protein, which 
is involved in organismal development and the fate 
determination of individual cells [65]. In summary, 
trenbolone administration increases the levels of 
the Numb molecule, thus enhancing the pro-anabolic 
action of the Wnt pathway by further inhibiting 
the Notch pathway, an antagonist of the Wnt pathway.

However, recent studies indicate the presence of 
another pathway through which androgens can po-
tentially act, viz. the non-genomic pathway (Fig. 2), 
also referred to as the fast pathway, because its action 
involves a surface receptor associated with the G pro-
tein. The pathway is activated by a sudden increase 
in calcium (Ca2+) levels from intracellular stores. 
Unfortunately, the pathway is believed to act through 
testosterone, not trenbolone, and has been described 
in IC-21 macrophage cells [66, 67]. Even so, it is still 
possible that this pathway could occur in cells other 
than macrophages, such as muscle cells, and that they 
could influence the action of anabolic substances: 
they may stimulate the binding androgens to AR or 
influence gene expression [63, 68, 69]. Furthermore, it is 
possible that by acting on similar structures in the cell, 
trenbolone could have similar non-genomic activity 
as testosterone on various cell types. However, more 
research on this topic is required to confirm this.

Finally, trenbolone can also influence skeletal muscle 
tissue growth by changes associated with muscle 
satellite cells (Fig. 2). This is a group of cells located 
in the niche between the muscle fibre membrane 
and the surrounding basement membrane, which have 
the ability to differentiate into myoblasts and form 
subsequent generations of muscle cells. They are cat-
egorised as tissue-targeted unipotent stem cells [70–72]. 
During laboratory studies, their activation was recorded 
as early as the first hour after trenbolone application, 
and this continued for 12 hours. They then entered 
a resting state, from which they could re-activate un-
der the influence of trenbolone after a further 24-hour 
period [53]. Their activation is probably driven by ARs, 
which increase in number after trenbolone treatment, 
reflected in an increase in their mRNA levels [73, 74]. 
AR stimulation may induce the expression of mind 
bomb 1 (Mib1) — ubiquitin ligase and the subsequent 
trans-endocytosis of the Notch pathway ligands 
Delta-like 1 (DLL1) and Jagged 1 (JAG1) in the myo-
fibers [75, 76]. These actions inhibit Notch pathway 
signalling, which is responsible for maintaining satellite 
cells in a quiescent state. This leads to the activation of 
satellite cells, during which, the satellite cells become 

direct precursors of skeletal muscle, i.e. myoblasts. 
The newly-formed myoblasts then fuse with each 
other and integrate into adjacent mature muscle cells 
by fusion, resulting in significant changes in the muscle 
tissue: an increase in the number of cell nuclei with 
a corresponding increase in the amount of DNA by up 
to 60% in some of the muscles studied, an expansion in 
the total amount of cytoplasm and contractile proteins 
(actin and myosin). The increase in the amount of actin 
and myosin results in the muscle cell generating more 
total force [44]. 

These changes may potentially be responsible for 
user reports of significant increases in total muscle 
strength following use of the drug. The exact molecu-
lar mechanisms behind the activation of satellite cells 
by trenbolone have not been fully explained. However, 
studies have shown that direct addition of trenbolone 
to the in vitro cell culture containing satellite cells did 
not increase their proliferation, differentiation or fu-
sion. Instead, it was found that trenbolone increased 
the sensitivity of satellite cells to two growth factors, 
IGF-1 and FGF, which acted as mediators indirectly 
stimulating the activation and further function of satel-
lite cells [77]. 

In addition to satellite cell sensitivity, trenbolone 
is also believed to be involved in the potentiation of 
various mediators. Notably, various studies report 
a build-up of IGF-1 mRNA in many tissues after trenbo-
lone treatment, resulting in an increase in blood IGF-1 
level [78, 79]. 

Such an increase may significantly affect sensitised 
satellite cells and induce their activation and prolifera-
tion, potentially resulting in skeletal muscle growth.

Effects on adipose tissue
It was observed that hypogonadal rats, characterised 
by low levels of testosterone, demonstrated a statisti-
cally-significant decrease in muscle mass and increase 
in adipose tissue, which is analogous to observations 
of humans [4, 80]. In this study, moderate doses of exog-
enous testosterone halted the decrease in muscle mass 
and reduced fat gain, while higher doses resulted in 
a noticeable increase in muscle mass and a concomitant 
reduction in body fat compared to control rats without 
induced hypogonadism [4]. The study yielded extreme-
ly satisfactory results regarding the marked inhibition of 
catabolic effects in the body, and confirmed the validity 
of hormone replacement therapy in humans with low 
testosterone levels. 

Unfortunately, the mechanisms by which trenbo-
lone affects adipose tissue remain unknown. However, 
trenbolone is known that trenbolone demonstrates 
a high affinity for ARs commonly found in the cells 
that make up adipose tissue e.g. adipocytes, pre-
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adipocytes and mesenchymal stem cells [81], and that 
androgens inhibit the differentiation of preadipocytes 
and mesenchymal stem cells into mature adipocytes 
through AR [82]. Such effects may occur through re-
duced expression of adipogenic genes, such as PPARg 
and C/EBPa, as well as through increased nuclear 
translocation of b-catenin and activation of Wnt sig-
nalling, promoting the myogenic lineage [76, 83]. All 
these activities may lead to lipolysis of adipose tissue. In 
various laboratory studies, rats have been observed to 
demonstrate a marked loss of subcutaneous adipose tis-
sue, intramuscular fat, retroperitoneal fat and perirenal 
fat after trenbolone treatment [84–86]. It has also been 
shown that trenbolone can directly induce lipolytic ef-
fects by affecting the liver; presumably, this may occur 
by increasing the expression of the enoylo-CoA hydra-
tase (ECH) and acyl-CoA dehydrogenase involved in 
fat metabolism in this organ [87]. 

Hence, it can be concluded that trenbolone appears 
to have a lipolytic effect on adipose tissue. These find-
ings could potentially confirm the beneficial fat-burning 
effects of androgens reported in human cell studies 
[82]. However, studies are needed to confirm this effect 
in human groups, particularly with regard to trenbo-
lone, and identify the mechanism responsible.

Effects on male reproductive system
The World Health Organisation (WHO) classifies in-
fertility as the state of not being able to get pregnant, 
despite regular sexual intercourse (three or four times 
a week), maintained for more than 12 months, without 
any preventive measures [88]. Infertility is a serious 
problem in developed countries, where it is estimated 
to affect about 10–12% of couples; this would equate 
to nearly one million couples in Poland. It is highly 
probable that the number of infertile men and women 
will increase over time, as a result of delayed decisions 
about parenthood. The increasing use of AASs by men, 
and its associated infertility, adds to the problems facing 
the public health institutions of developed countries in 
the realities of the modern world.

Infertility in users of AAS, including trenbolone, 
most commonly manifests as oligo- and azoospermia, 
as well as abnormalities in sperm mobility and morphol-
ogy [89]. In addition, significant hormonal deviations 
can be observed, but decreased libido levels or erectile 
dysfunction, are typically only reported after ceasing 
the use of exogenous hormones. Such changes include 
decreased levels of endogenous testosterone and the pi-
tuitary hormones LH and FSH. The symptoms can be 
defined by the term “functional hypogonadism” [44, 
90], which manifests as a significant decrease in endog-
enous testosterone, testicular atrophy and impaired 
spermatogenesis [91]. The endocrine abnormalities 

associated with the condition derive from the negative 
effects of exogenous androgens on the hypothalam-
ic-pituitary-gonadal axis, as well as their direct action 
on Leydig cells, which produce testosterone under 
physiological conditions [91].

A number of studies have also report AAS-in-
duced morphological changes in various cells of 
the male reproductive system and the male gametes. 
One such change observed in male rat testes involves 
structural changes in Leydig cells, and an overall 
reduction in their number, resulting in a decrease in 
endogenous testosterone; in contrast, physiological con-
centration determines optimal spermatogenesis [92, 93]. 
The impaired spermatogenesis has also been observed 
as a lack of advanced forms of spermatids (spermato-
genesis arrest) and various changes in spermatozoa. 
One of the most noticeable changes was a decrease in 
sperm cell motility. Fluorescent in-situ hybridization 
(FISH) studies have noted changes in cellular ultra-
structure in some spermatozoa, as well as an increased 
frequency of sex chromosome (XY) disomy, indicating 
a segregation anomaly at the first meiotic division 
and of chromosome 9 disomy [94, 95]. Last but not 
least, elevated apoptosis has been noted in sperm cells; 
when research subjects are administered agents from 
the nandrolone group, such as trenbolone, the degree 
of apoptosis increases above level as noted during 
intensive physical exercise under physiological condi-
tions, which is already elevated from proper intensity 
of apoptosis, anyway [96]. 

Some studies were carried out in rats with nan-
drolone, a compound with a similar mechanism of 
action and belonging to the same AAS group, so it 
can be speculated that trenbolone will induce similar 
changes. In these experiments a decrease in the di-
ameter of seminiferous tubules was noticed, what is 
associated with the lower height of the seminiferous  
epithelium and hypospermatogenesis [97]. Moreover, 
changes in the blood-testis barrier were found, such 
as the degradation of the tight junction protein  1 
(TJP1), deregulation of metalloproteinase 9, metal-
loproteinase 2 (MMP-2), the tissue inhibitor of MMP-2 
and mislocalization of mucin 1 [98]. All these changes 
can lead to impairment of blood-testis barrier and, as 
a consequence, disturb the immune integrity of testicles.

In most men, a spontaneous return of semen qual-
ity occurs four to twelve months after discontinuation 
of exogenous anabolic agents [44, 92]. However, in 
those who do not recover, treatment may be applied 
as in other forms of hypogonadotropic hypogonad-
ism. Gonadotropins or their analogues are then used. 
It has been found that the greatest chance of restoring 
fertility is associated with the use of an LH/hCG-acting 
preparation, alone or in combination with an FSH-act-
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ing preparation. Antiestrogens (aromatase inhibitors 
and selective estrogen receptor modulators — SERMs) 
are used to unblock pituitary, irrespective of blood 
estradiol levels. Reduced inhibiting influence of es-
trogen on hypothalamus and pituitary gland leads to 
an increase in both gonadotropins secretion and thus 
spermatogenesis recovery [99].

With these methods, it has been shown that even 
prolonged infertility, manifested by oligozoospermia, 
can be cured up to five years after AAS withdrawal 
[100]. However, the use of these agents permanently 
affects semen quality, as indicated in studies of previ-
ous AAS users; the treatment results in a higher than 
normal amount of hypokinetic and abnormal sperm in 
the semen [44, 100, 101].

Effects on the breast gland
Gynecomastia, which is characterized by develop-
ment and swelling of breast tissue, is frequent side 
effect in trenbolone users. Although trenbolone does 
not convert to estrogen it binds with high affinity to 
the progesterone receptor [102]. Progesterone appears 
to be required to form true glandular acini acting in 
synergy with insulin growth factor 1 (IGF-1) [103]. AAS 
cause also a reduction in the level of thyreoglobulin 
(TBG), which binds thyroid hormones in the blood. 
This implies a reduction in the serum levels of free 
triiodothyronine (fT3) and thyroxine (fT4) [104]. As 
a result of a negative return loop this causes an increase 
in TRH secretion, which stimulates prolactin secretion 
[105]. Prolactin receptors have been demonstrated in 
the breast tissue. Moreover, hyperprolactinemia prob-
ably plays an indirect role in gynaecomastia, since it 
causes central hypogonadism and alters the andro-
gen/estrogen ratio [106].

Effects on the immune system
Another interesting issue regarding the use of trenbo-
lone, is its effect on the immune system. So far, relatively 
few studies have explored the effects of high concentra-
tions of AAS in this regard; however, a relationship has 
been noted between the immune and endocrine sys-
tems in vertebrate organisms [107–109], and it seems 
certain that AAS use can cause disturbances in hormone 
levels and general endocrine disruption. As mentioned, 
these disorders are not isolated from the immune 
system, and it is important to note that androgens can 
influence innate and specific immunity. Furthermore, it 
is known that endogenous steroid sex hormones reduce 
immunity [110], and the potential harm of the synthetic 
steroid trenbolone on immunity merits further inter-
est. Men using AAS report decreased immunity dur-
ing and immediately after a trenbolone “cycle”, such 
as an increase in the incidence of various colds, viral 

and bacterial infections and hemiplegia, with recur-
rences noted after treatment [111, 112]. 

It was revealed that endogenous testosterone has 
a suppressive effect on the immune system [113]. This 
action affected T lymphocytes in particular and includ-
ed a general reduction in their activity levels. However, 
the pathway by which this effect occurs was not ex-
plained. Instead, it was found that it could occur directly 
by acting on the AR present on the lymphocytes or by 
converting testosterone to estrogen and acting through 
a pathway related to it. In another study, castrated rats 
demonstrated a 90% increased immune response [114] 
compared to controls, and this value decreased expo-
nentially after external testosterone was administered. 

While these findings provide a general picture of 
the immunosuppressive role of endogenous, steroidal 
sex hormones, more detailed information has been 
obtained regarding their influence on T lymphocytes. 
T lymphocytes can be divided into three subpopula-
tions based on their function: T cytotoxic (Tc), T helper 
(Th) and T regulatory (Treg) lymphocytes. Accord-
ingly, the first population is responsible for destroying 
cells infected by microorganisms (including viruses) 
and tumor cells and the second supports the immune 
response through various cytokinins, while the final 
one regulates the immune response process and, 
if necessary, inhibits it. It has been presented, that 
the immune response exponent was the  phytohemag-
glutinin PHA skin test, which yields a classical type IV 
delayed response: being a myotogen, PHA activates T 
lymphocytes without the antigen induction necessary 
in a type IV response [115]. This results in the activa-
tion of tissue macrophages by substances secreted 
by the lymphocytes, and the development of local 
inflammation on the skin, i.e. delayed cutaneous hy-
persensitivity (DCH). This reaction is dependent on 
Th lymphocytes. The study found all applied AASs, 
including trenbolone, to cause a marked reduction in 
DCH levels, indicating a reduction in Th lymphocyte 
activity [116]. The exact metabolic pathways of trenbo-
lone are not known, but it is thought to act both directly 
through AR, which has been shown to be present on 
various T-lymphocyte subpopulations [116–118], as well 
as by modulating hormone secretion by the adrenal 
cortex or reproductive organs [116]. 

Trenbolone may also act on T lymphocytes via 
the activation of membrane receptors caused by in-
creased Ca2+ levels. This would initiate a sequence 
of molecular events in the cell [119, 120] resulting 
in the successive phosphorylation of individual 
tyrosine-based substrates, the membrane linker of T 
cell activation and Src domains [121, 122] and thus 
the activation of transcription factors, including nuclear 
factor of activated T cells (NFAT). The final effect of this 
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pathway is increased expression of transcription factors 
associated with T cells: T-bet, Gata3, RORt and Foxp3 
[123]. These are necessary for the generation of a sub-
population of effector T cells: CD4+ helper T cells. In 
addition, the activation of NFAT results in increased 
secretion of various cytokines, e.g. IL-2 and various 
chemokines, together with the suppression of Treg 
lymphocytes [120, 124], which may affect the overall 
immune response in the body. 

The use of high levels of trenbolone was found to 
decrease lysozyme levels significantly in a tissue-specif-
ic manner [125]: a significant decrease was observed in 
trout liver and plasma, while a statistically insignificant 
decrease was found in the kidney. Interestingly, no sig-
nificant changes in the expression of the genes encoding 
this protein were recorded in the two tested organs. 
However, it is important to note that mRNA and pro-
tein expression are not always directly proportional 
to each other, and in this case, there may have been 
a simple delay in the expression of this gene connected 
to a decrease in the level of the enzyme; the timing of 
the study may not have allowed this to be visualised 
[126]. Lysozyme is part of the innate immune system 
and can have a destructive effect on the bacterial cell 
wall by hydrolysing the glycosidic bond between 
N-acetylmuramic acid (NAM) and N-acetylglucosamine 
(NAG) [127]. In conclusion, reduced levels of lyso-
zyme may have clinical implications, in terms of more 
frequent or clinically-intense bacterial infections, 
but more research is needed to confirm this.

Another component of the innate immune sys-
tem that is ambiguously affected by trenbolone is 
the complement system. Its levels fluctuated signifi-

cantly under the influence of different concentrations of 
an administered anabolic androgen hormone in trout. 
As with lysozyme, such changes depended very much 
on the specific area of the body: a significant decrease 
in activity was demonstrated in plasma, while the op-
posite effect occurred in kidneys [125]. As a component 
of the innate immune system, the complement plays 
various roles during the immune response, following 
the sequential activation of a protein cascade. Among 
other things, it is responsible for initiating the inflamma-
tory process, opsonisation and facilitating phagocytosis, 
and bacterial cell lysis. While it has been proposed that 
disturbances in its plasma activity can, like lysozyme, 
impair the immune response against bacteria, more 
research is needed to confirm this.

A final aspect of the action of trenbolone that 
should be mentioned is its effect on genes involved 
in the development and maturation of different 
lymphoid cell populations. Administration was as-
sociated with a marked decrease in the expression of 
the RAG-1 and RAG-2 genes, which are essential for 
the proper functioning of lymphocytes [125]. How-
ever, no changes were noted in the total number of 
lymphocytes and the immunoglobulins produced by 
them. This may be due to the same reasons as described 
above for lysozyme.

Summary

The effects of trenbolone are not limited to a single 
tissue. It acts systemically on the body, and as such, its 
side effects can manifest as symptoms from different 
systems (Tab. 1).

Table 1. Effects of trenbolone — summary

Tissue type Effects of trenbolone

Nervous

Pro-apoptotic effect on neurons

Reduction in brain tissue volume

Accumulation of the toxic protein Ab-42

Modulation of the structure and function of GABA and NDMA receptors

Muscle Stimulation of skeletal muscle for supra-physiological growth through direct effects on muscle fibres and indirect effects 
on myosatellite cells and endogenous growth factors

Adipose Lipolytic effects resulting in a reduction of fat deposits in various areas of the body

Reproductive

Induction of functional hypogonadism

Disturbances in the structure and number of Leydig cells

Disturbances of the structure and number of sperm cells

Acceleration of sperm apoptosis processes

Immune

Decrease in T lymphocyte activity

Decrease in plasma lysozyme levels

Decrease in plasma complement system activity

GABA — gamma-aminobutyric acid; NDMA — N-nitrosodimethylamine 
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This article focuses only on the most significant 
consequences of trenbolone use with regard to selected 
tissue structures, and the morphological and functional 
changes observed in them. However, various other 
adverse consequences of trenbolone utilization are 
included in the literature, with severe acne and gyn-
aecomastia affecting approximately one-third of all 
users [3], as well as excessive body hair, stretch marks, 
hypertension and cardiac arrhythmia [4]. The drugs 
are also subject to contamination, with use frequently 
resulting in local inflammation at the injection site 
[128], muscle adhesions and fibrosis, nerve damage or, 
in extreme cases, necrosis of the injection site (Nicolau 
syndrome) [129].

In addition, the fact that multiple AASs may be 
used simultaneously presents a significant problem in 
their study. The users may report that they use smaller 
doses of different agents to minimise the negative 
side-effects that are more likely to occur when one agent 
is taken at an increased dose. Bodybuilders usually take 
trenbolone together with various testosterone esters 
(cypionate, enanthate or propionate) and nandrolone 
phenylpropionate [3, 4, 44]. This makes it very difficult 
to precisely determine the AAS responsible for the nega-
tive side effects, and the results cannot always be related 
to the actual conditions under which trenbolone acts 
in the body.

Additionally, due to the lack of available knowledge 
on the subject, many of the effects of trenbolone use re-
main unknown. Therefore, given its prevalence and po-
tential danger, further research is necessary to better 
understand the effects of trenbolone use on the body, 
and to expand our currently incomplete knowledge of 
its functional pathways.
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