open access

Vol 75, No 2 (2024)
Review paper
Submitted: 2024-01-12
Accepted: 2024-03-13
Published online: 2024-04-22
Get Citation

The role of genetic risk factors, diet, and gut microbiota in type 1 diabetes mellitus, pancreas and pancreatic islet transplantation

Agnieszka Zawada1, Marzena Skrzypczak-Zielińska2, Sarah Gondek3, Piotr Witkowski3, Anna M. Rychter41, Alicja E. Ratajczak-Pawłowska41, Marek Karczewski5, Agnieszka Dobrowolska1, Iwona Krela-Kaźmierczak41
·
Pubmed: 38646984
·
Endokrynol Pol 2024;75(2):140-147.
Affiliations
  1. Department of Gastroenterology, Dietetics, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
  2. Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
  3. The Transplantation Institute, University of Chicago, Chicago, United States
  4. Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
  5. Department of General and Transplantation Surgery, Poznan University of Medical Sciences, Poznan, Poland

open access

Vol 75, No 2 (2024)
Review Article
Submitted: 2024-01-12
Accepted: 2024-03-13
Published online: 2024-04-22

Abstract

Despite advances in insulin delivery and glucose monitoring technology, prevention of the progression of secondary complications in patients with type 1 diabetes (T1DM) remains a challenge. Beta cell replacement therapy in the form of islet or pancreas transplantation can restore long-term normoglycaemia with sustained periods of insulin independence among T1DM patients.

However, the same genetic, behavioural, or gut microbiota-related factors that promoted autoimmunity and primary islet destruction may also affect the function of transplanted islets and the ultimate results of transplant procedures. In such cases, identifying genetic risk factors and modifying behavioural factors and those related to gut microbiota may be beneficial for the outcomes of transplant procedures.

Herein, we review related literature to the identified current gap in knowledge to be addressed in future clinical trials.

Abstract

Despite advances in insulin delivery and glucose monitoring technology, prevention of the progression of secondary complications in patients with type 1 diabetes (T1DM) remains a challenge. Beta cell replacement therapy in the form of islet or pancreas transplantation can restore long-term normoglycaemia with sustained periods of insulin independence among T1DM patients.

However, the same genetic, behavioural, or gut microbiota-related factors that promoted autoimmunity and primary islet destruction may also affect the function of transplanted islets and the ultimate results of transplant procedures. In such cases, identifying genetic risk factors and modifying behavioural factors and those related to gut microbiota may be beneficial for the outcomes of transplant procedures.

Herein, we review related literature to the identified current gap in knowledge to be addressed in future clinical trials.

Get Citation

Keywords

pancreatic islets transplantation; genes; gut microbiota; diet; type 1 diabetes

About this article
Title

The role of genetic risk factors, diet, and gut microbiota in type 1 diabetes mellitus, pancreas and pancreatic islet transplantation

Journal

Endokrynologia Polska

Issue

Vol 75, No 2 (2024)

Article type

Review paper

Pages

140-147

Published online

2024-04-22

Page views

191

Article views/downloads

100

DOI

10.5603/ep.98903

Pubmed

38646984

Bibliographic record

Endokrynol Pol 2024;75(2):140-147.

Keywords

pancreatic islets transplantation
genes
gut microbiota
diet
type 1 diabetes

Authors

Agnieszka Zawada
Marzena Skrzypczak-Zielińska
Sarah Gondek
Piotr Witkowski
Anna M. Rychter
Alicja E. Ratajczak-Pawłowska
Marek Karczewski
Agnieszka Dobrowolska
Iwona Krela-Kaźmierczak

References (65)
  1. Sun JK, Keenan HA, Cavallerano JD, et al. Protection from retinopathy and other complications in patients with type 1 diabetes of extreme duration: the joslin 50-year medalist study. Diabetes Care. 2011; 34(4): 968–974.
  2. Gao X, Gauderman WJ, Marjoram P, et al. Native American ancestry is associated with severe diabetic retinopathy in Latinos. Invest Ophthalmol Vis Sci. 2014; 55(9): 6041–6045.
  3. Arar NH, Freedman BI, Adler SG, et al. Family Investigation of Nephropathy and Diabetes Research Group. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Vis Sci. 2008; 49(9): 3839–3845.
  4. Monti MC, Lonsdale JT, Montomoli C, et al. Familial risk factors for microvascular complications and differential male-female risk in a large cohort of American families with type 1 diabetes. J Clin Endocrinol Metab. 2007; 92(12): 4650–4655.
  5. Bhatwadekar AD, Shughoury A, Belamkar A, et al. Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes (Basel). 2021; 12(8).
  6. Abhary S, Burdon KP, Laurie KJ, et al. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility. Diabetes Care. 2010; 33(8): 1834–1836.
  7. Skol AD, Jung SC, Sokovic AM, et al. DCCT/EDIC Study group. Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes. Elife. 2020; 9.
  8. Cao M, Tian Z, Zhang L, et al. Genetic association of AKR1B1 gene polymorphism rs759853 with diabetic retinopathy risk: A meta-analysis. Gene. 2018; 676: 73–78.
  9. Balasubbu S, Sundaresan P, Rajendran A, et al. Association analysis of nine candidate gene polymorphisms in Indian patients with type 2 diabetic retinopathy. BMC Med Genet. 2010; 11: 158.
  10. Yang Q, Zhang Y, Zhang X, et al. Association of VEGF Gene Polymorphisms with Susceptibility to Diabetic Retinopathy: A Systematic Review and Meta-Analysis. Horm Metab Res. 2020; 52(5): 264–279.
  11. Politi C, Ciccacci C, D'Amato C, et al. Recent advances in exploring the genetic susceptibility to diabetic neuropathy. Diabetes Res Clin Pract. 2016; 120: 198–208.
  12. Midani F, Ben Amor Z, El Afrit MA, et al. The Role of Genetic Variants (rs869109213 and rs2070744) Of the Gene and II in the α Subunit of the αβ Integrin Gene in Diabetic Retinopathy in a Tunisian Population. Semin Ophthalmol. 2019; 34(5): 365–374.
  13. Luo S, Shi C, Wang F, et al. Association between the Angiotensin-Converting Enzyme (ACE) Genetic Polymorphism and Diabetic Retinopathy-A Meta-Analysis Comprising 10,168 Subjects. Int J Environ Res Public Health. 2016; 13(11).
  14. Liang S, Pan M, Hu N, et al. Association of angiotensin-converting enzyme gene 2350 G/A polymorphism with diabetic retinopathy in Chinese Han population. Mol Biol Rep. 2013; 40(1): 463–468.
  15. Marre M, Bernadet P, Gallois Y, et al. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes. 1994; 43(3): 384–388.
  16. Fan Y, Fu YY, Chen Z, et al. Gene-gene interaction of erythropoietin gene polymorphisms and diabetic retinopathy in Chinese Han. Exp Biol Med (Maywood). 2016; 241(14): 1524–1530.
  17. Mankoč Ramuš S, Pungeršek G, Petrovič MG, et al. The GG genotype of erythropoietin rs1617640 polymorphism affects the risk of proliferative diabetic retinopathy in Slovenian subjects with type 2 diabetes mellitus: enemy or ally? Acta Ophthalmol. 2021; 99(8): e1382–e1389.
  18. Vuori N, Sandholm N, Kumar A, et al. FinnDiane Study. Is a Novel Susceptibility Gene for Diabetic Retinopathy in Type 1 Diabetes. Diabetes. 2019; 68(11): 2165–2174.
  19. Grassi MA, Tikhomirov A, Ramalingam S, et al. Genome-wide meta-analysis for severe diabetic retinopathy. Hum Mol Genet. 2011; 20(12): 2472–2481.
  20. Fu YP, Hallman DM, Gonzalez VH, et al. Identification of Diabetic Retinopathy Genes through a Genome-Wide Association Study among Mexican-Americans from Starr County, Texas. J Ophthalmol. 2010; 2010.
  21. Burdon KP, Fogarty RD, Shen W, et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia. 2015; 58(10): 2288–2297.
  22. Pollack S, Igo R, Jensen R, et al. Erratum. Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control. Diabetes 2019;68:441—456. Diabetes. 2020; 69(6): 1306–1306.
  23. Imamura M, Takahashi A, Matsunami M, et al. International Diabetic Retinopathy and Genetics CONsortium (iDRAGON). Genome-wide association studies identify two novel loci conferring susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. Hum Mol Genet. 2021; 30(8): 716–726.
  24. Mathebula S. Polyol pathway: A possible mechanism of diabetes complications in the eye. Afr Vis Eye Health. 2015; 74(1).
  25. Gallego Ferrero P, Crespo Del Pozo J. Imaging in pancreas transplantation complications: Temporal classification. J Med Imaging Radiat Oncol. 2018 [Epub ahead of print].
  26. Dholakia S, Royston E, Quiroga I, et al. The rise and potential fall of pancreas transplantation. Br Med Bull. 2017; 124(1): 171–179.
  27. Aref A, Zayan T, Pararajasingam R, et al. Pancreatic transplantation: Brief review of the current evidence. World J Transplant. 2019; 9(4): 81–93.
  28. Dery KJ, Kadono K, Hirao H, et al. Microbiota in organ transplantation: An immunological and therapeutic conundrum? Cell Immunol. 2020; 351: 104080.
  29. Wang W, Xu S, Ren Z, et al. Gut microbiota and allogeneic transplantation. J Transl Med. 2015; 13: 275.
  30. Gradisteanu Pircalabioru G, Corcionivoschi N, Gundogdu O, et al. Dysbiosis in the Development of Type I Diabetes and Associated Complications: From Mechanisms to Targeted Gut Microbes Manipulation Therapies. Int J Mol Sci. 2021; 22(5).
  31. Witkowski P, Philipson LH, Buse JB, et al. Islets Transplantation at a Crossroads - Need for Urgent Regulatory Update in the United States: Perspective Presented During the Scientific Sessions 2021 at the American Diabetes Association Congress. Front Endocrinol (Lausanne). 2021; 12: 789526.
  32. Shapiro AM. Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome. Rev Diabet Stud. 2012; 9(4): 385–406.
  33. Lablanche S, Vantyghem MC, Kessler L, et al. TRIMECO trial investigators. Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2018; 6(7): 527–537.
  34. Fensom B, Harris C, Thompson SE, et al. Islet cell transplantation improves nerve conduction velocity in type 1 diabetes compared with intensive medical therapy over six years. Diabetes Res Clin Pract. 2016; 122: 101–105.
  35. Thompson DM, Meloche M, Ao Z, et al. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation. 2011; 91(3): 373–378.
  36. Danielson KK, Hatipoglu B, Kinzer K, et al. Reduction in carotid intima-media thickness after pancreatic islet transplantation in patients with type 1 diabetes. Diabetes Care. 2013; 36(2): 450–456.
  37. Poggioli R, Enfield G, Messinger S, et al. Nutritional status and behavior in subjects with type 1 diabetes, before and after islet transplantation. Transplantation. 2008; 85(4): 501–506.
  38. Okamoto T, Kuroki T, Adachi T, et al. Effect of zinc on early graft failure following intraportal islet transplantation in rat recipients. Ann Transplant. 2011; 16(3): 114–120.
  39. Gray A, Threlkeld RJ. Nutritional Recommendations for Individuals with Diabetes. In: Feingold KR, Anawalt B, Boyce A. et al. ed. Endotext [Internet]. MDText.com, South Dartmouth (MA) 2000.
  40. Patton SR. Adherence to diet in youth with type 1 diabetes. J Am Diet Assoc. 2011; 111(4): 550–555.
  41. Mohammed MA, Sharew NT. Adherence to dietary recommendation and associated factors among diabetic patients in Ethiopian teaching hospitals. Pan Afr Med J. 2019; 33: 260.
  42. Pancheva R, Zhelyazkova D, Ahmed F, et al. Dietary Intake and Adherence to the Recommendations for Healthy Eating in Patients With Type 1 Diabetes: A Narrative Review. Front Nutr. 2021; 8: 782670.
  43. Powers MA, Gal RL, Connor CG, et al. Eating patterns and food intake of persons with type 1 diabetes within the T1D exchange. Diabetes Res Clin Pract. 2018; 141: 217–228.
  44. Potter KJ, Abedini A, Marek P, et al. Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts. Proc Natl Acad Sci U S A. 2010; 107(9): 4305–4310.
  45. Ortega Á, Berná G, Rojas A, et al. Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate. Int J Mol Sci. 2017; 18(6).
  46. Felisbino K, Granzotti JG, Bello-Santos L, et al. Nutrigenomics in Regulating the Expression of Genes Related to Type 2 Diabetes Mellitus. Front Physiol. 2021; 12: 699220.
  47. Udogadi N, Abdullahi M. Interplay between nutrigenomics and diabetes: a mini review. J Diab Metab Diso Control. 2020; 7(1): 9–12.
  48. Biros E, Jordan MA, Baxter AG. Genes mediating environment interactions in type 1 diabetes. Rev Diabet Stud. 2005; 2(4): 192–207.
  49. Patrick C, Wang GS, Lefebvre DE, et al. Promotion of autoimmune diabetes by cereal diet in the presence or absence of microbes associated with gut immune activation, regulatory imbalance, and altered cathelicidin antimicrobial Peptide. Diabetes. 2013; 62(6): 2036–2047.
  50. Achenbach P, Bonifacio E, Koczwara K, et al. Natural History of Type 1 Diabetes. Diabetes. 2005; 54(suppl_2): S25–S31.
  51. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012; 336(6086): 1268–1273.
  52. Wen Li, Ley RE, Volchkov PYu, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008; 455(7216): 1109–1113.
  53. Alkanani AK, Hara N, Lien E, et al. Induction of diabetes in the RIP-B7.1 mouse model is critically dependent on TLR3 and MyD88 pathways and is associated with alterations in the intestinal microbiome. Diabetes. 2014; 63(2): 619–631.
  54. de Groot PF, Belzer C, Aydin Ö, et al. Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS One. 2017; 12(12): e0188475.
  55. Brown CT, Davis-Richardson AG, Giongo A, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011; 6(10): e25792.
  56. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504(7480): 446–450.
  57. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016; 7(3): 189–200.
  58. Uusitalo U, Liu X, Yang J, et al. TEDDY Study Group. Association of Early Exposure of Probiotics and Islet Autoimmunity in the TEDDY Study. JAMA Pediatr. 2016; 170(1): 20–28.
  59. Groele L, Szajewska H, Szypowska A. Effects of GG and Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: protocol of a randomised controlled trial. BMJ Open. 2017; 7(10): e017178.
  60. Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018; 562(7728): 589–594.
  61. Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013; 11: 46.
  62. Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011; 5(1): 82–91.
  63. Xie L, Hu X, Li W, et al. A retrospective study of end-stage kidney disease patients on maintenance hemodialysis with renal osteodystrophy-associated fragility fractures. BMC Nephrol. 2021; 22(1): 23.
  64. Oh PL, Martínez I, Sun Y, et al. Characterization of the ileal microbiota in rejecting and nonrejecting recipients of small bowel transplants. Am J Transplant. 2012; 12(3): 753–762.
  65. Xie Y, Chen H, Zhu B, et al. Effect of intestinal microbiota alteration on hepatic damage in rats with acute rejection after liver transplantation. Microb Ecol. 2014; 68(4): 871–880.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą jest  VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl