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ment therapy with islet cell or pancreas transplantation. 
However, the need for toxic lifelong immunosup-
pressive medication remains a considerable hurdle 
precluding the extensive application of this therapy. 
The review aims to establish the current knowledge 
about genetic and behavioural determinants, abnor-
malities in the gut microbiota concerning the severity of 
diabetic complications, and the outcomes after pancreas 
and pancreatic islet transplantation.

Genetic factors and progression of secondary 
complications in patients with T1DM
There seem to be other factors affecting the progres-
sion of secondary diabetic complications besides poor 
blood glucose control. There are patients with similar 
duration of diabetes and degree of glycaemic control 
but with very different severity of microangiopathy 
(particularly diabetic retinopathy and nephropathy) [1, 
2]. Hence, it is essential to look for predictors of severe 
course and progression of complications. The Family 
Investigation of Nephropathy and Diabetes (FIND-Eye 

Introduction

Type 1 diabetes mellitus as an autoimmune 
disease
Type 1 diabetes mellitus (T1DM) is an autoimmune 
disease in which pancreatic beta cells are selectively 
destroyed, leading to a deficiency in insulin produc-
tion in the body and subsequent hyperglycaemia. 
Despite technological advancement in exogenous in-
sulin supplementation and blood glucose monitoring, 
the disease still presents a significant clinical challenge, 
suboptimal blood glucose control, and the development 
of secondary diabetic complications. Epidemiological 
data indicate that microangiopathic complications 
affect approximately 30% of patients with diabetes, 
and macroangiopathy is still a primary cause of mor-
tality, significantly higher than in the general popula-
tion. Patients with T1DM have reduced life expectancy 
and live with significant disabilities and poor quality of 
life. Increasingly, researchers are looking for alternative 
ways to treat diabetes in the form of beta cell replace-
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Abstract 
Despite advances in insulin delivery and glucose monitoring technology, prevention of the progression of secondary complications in 
patients with type 1 diabetes (T1DM) remains a challenge. Beta cell replacement therapy in the form of islet or pancreas transplantation 
can restore long-term normoglycaemia with sustained periods of insulin independence among T1DM patients. However, the same genetic, 
behavioural, or gut microbiota-related factors that promoted autoimmunity and primary islet destruction may also affect the function 
of transplanted islets and the ultimate results of transplant procedures. In such cases, identifying genetic risk factors and modifying 
behavioural factors and those related to gut microbiota may be beneficial for the outcomes of transplant procedures. Herein, we review 
related literature to the identified current gap in knowledge to be addressed in future clinical trials. (Endokrynol Pol 2024; 75 (2): 140–147)
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with retinopathy and other complications and the se-
vere course of diabetes in these patients. Advanced 
genetic techniques may help identify patients more 
prone to develop microangiopathic complications, in 
whom the use of beta cell replacement therapy may 
provide more clinical benefit. Based on previous scien-
tific studies, especially genome-wide association studies 
(GWAS), numerous candidate genes have been identi-
fied that may be involved in determining the course of 
DM1. They are summarised in Table 1.

research) found a significant heritability of diabetic 
retinopathy at 27%, and a study of a group of 8114 
DM1 patients among 6707 American families confirmed 
a serious familial risk of diabetic retinopathy, regardless 
of disease duration [3, 4]. The literature describes nu-
merous genes potentially related to the progression of 
diabetic complications, but there is a lack of consistent 
findings and use of this knowledge in clinical practice 
[5, 6]. Thus, it is crucial to conduct further molecular 
genetic studies to define the genetic factors associated 

Table 1. Candidate gene studies in diabetic retinopathy, nephropathy, and neuropathy

Candidate gene Gene location OMIM 
entry Polymorphism Effect on T1DM Reference

Folliculin (FLCN) 17p11.2 607273 rs11867934 Susceptibility to 
diabetic retinopathy Skol et al. 2020 [7] 

Aldose reductase (AKR1B1)
7q33 

103880

rs9640883
rs759853 Protection from 

diabetic retinopathy Cao et al. 2018 [8] 

Duration of diabetes Abhary et al. 2010 
[6] 

Receptor for advanced 
glycation end product (AGER) 6p21.32 600214 Risk of diabetic 

retinopathy 
Balasubbu et al. 2010 

[9] 

Vascular endothelial growth 
factor (VEGFA)

6p21.1

192240

rs3025039

rs25648

rs3025039 rs3025021 
rs13207351 rs2146323 

rs2010963 rs25648 
rs833061 rs2010963

Risk of diabetic 
retinopathy Yang et al. 2020 [10] 

Susceptibility to diabetic 
neuropathy.

Politi et al. 2016 
[11] 

Endothelial nitric oxide 
synthase (NOS3)

7q36.1
163729

rs270744
rs869109213 rs2070744 Risk of diabetic 

retinopathy 
Midani et al. 2019 

[12] 

Susceptibility to diabetic 
neuropathy

Angiotensin I converting 
enzyme (ACE)

17q23.3
106180

rs1799752
rs1799752 rs4343 Risk of diabetic 

retinopathy 
Luo et al. 2016 [13];

Liang et al. 2013 [14] 

Risk of diabetic retinal 
and renal complications

Marre et al., 1994 
[15] 

Erythropoietin (EPO) 7q22.1 133170

rs551238

rs1617640 

rs507392

Risk of diabetic 
retinopathy

Fan et al. 2016 [16]; 
Abhary et al. 2010 

[6]; Mankoˇc Ramuš 
et al. 2021 [17] 

Calcium channel voltage 
dependent beta-2 sub unit 
(CACNB2)

10p12.33-p12.31 600003 rs202152674 rs137886839
Increased risk 
of proliferative 

diabetic retinopathy
Vuori et al. 2019 [18] 

Intergenic locus in between 
AKT3 and ZNF238 1:24401312 - rs476141 Increased risk of 

diabetic retinopathy
Grassi et al. 2011 

[19] 

Calcium/calmodulin-dependent 
protein kinase IV (CAMK4) 5q22.1 114080 rs2300782 Increased risk of 

diabetic retinopathy Fu et al. 2009 [20] 

Formin 1 (FMN1) 15q13.3 136535 rs2300782 Increased risk of 
diabetic retinopathy Fu et al. 2009 [20] 

Growth factor receptor bound 
2 (GRB2) 17q25.1 108355 rs9896052 Sight threatening 

diabetic retinopathy
Burdon et al. 2015 

[21] 

Valosin-containing protein-like 
(NVL) 1q42.11 602426 rs142293996 Increased risk of 

diabetic retinopathy
Pollack et al. 2019 

[22] 
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Beta cell replacement therapies: pancreas 
and pancreatic islet transplantation 
in T1DM

Pancreatic transplantation 
Pancreas transplantation has been offered to patients 
with T1DM since 1966 [25]. Metabolic outcomes of 
the procedure are excellent; the transplant restores 
proper interaction between beta and alpha cells, result-
ing in appropriate regulation of insulin and glucagon 
secretion, optimal blood glucose control, and long-term 
insulin independence. It also improves lipid pro-
file and normalises glucose production in the liver. 
Clinically, pancreas transplantation prevents the pro-
gression of neuropathy, retinopathy, and nephropathy 
and even, to some extent, reverses some pathological 
changes [26]. Unfortunately, despite improved surgical 
outcomes, the procedure still carries a substantial risk 
of morbidity, especially in patients with advanced car-
diovascular disease. Also, the need for lifelong immu-
nosuppression with related side effects (opportunistic 
infection, nephrotoxicity, neurotoxicity, hypertension, 

increased risk of skin cancer, and lymphoproliferative 
disease) limits pancreas transplantation utility to small 
patient populations [7]. Most commonly pancreas 
transplant is offered to patients with end-stage kidney 
disease who need surgery and immunosuppression for 
kidney transplantation. A pancreas can be offered at 
the time of kidney transplant as simultaneous kidney 
and pancreas transplantation (SPK), or subsequently 
after kidney transplant as pancreas after kidney trans-
plantation (PAK). Pancreas transplant alone (PTA) is of-
fered only to desperate patients with problematic hypo-
glycaemia despite optimal insulin treatment (Fig. 1) [27]. 

Microbiota is a factor that significantly influences 
the human immune system and may also affect the ac-
ceptance of the transplant [28, 29]. Pancreas transplanta-
tion can also affect patient microbiota by transmitting 
donor microbiota from donor duodenum transplanted 
together with the pancreas and by the effect of an-
tibiotics and immunosuppression medication used 
after the transplant. In addition, the gut microbiota 
composition of T1DM patients differs from healthy 
adults [30], which may have an additional effect on 

Candidate gene Gene location OMIM 
entry Polymorphism Effect on T1DM Reference

STT3 Oligosaccharyltransferase 
complex catalytic subunit B 
(STT3B)

3p23 608605 rs12630354 Increased risk of 
diabetic retinopathy

Imamura et al. 2021 
[23] 

Paralemmin 2 (PALM2AKAP2) 9q31.3 604582 rs140508424 Increased risk of 
diabetic retinopathy

Mathebula et al. 2015 
[24] 

Methylenetetrahydrofolate 
reductase (MTHFR) 1p36.22 607093 rs1801133

Susceptibility to 
diabetic neuropathy

Politi et al. 2016 [11] 

Glyoxalase I (GLO1) 6p21.2 138750 rs2736654

Apolipoprotein E (APOE) 19q13.32 107741 rs429358 

Interleukin 4 (IL4) 5q31.1 147780 VNTR (P1/P2 allele)

Glutathione peroxidase 1 
(GPX1) 3p21.31 138320 rs1050450

Adrenoceptor alpha 2B 
(ADRA2B) 2q11.2 104260 rs879255577

MicroRNA 146A

(MIR146A)
5q33.3 610566 rs2910164 Decreased risk of 

neuropathy

MicroRNA 128A (MIR128A) 2q21.3 611774 rs11888095 Susceptibility to 
diabetic neuropathy

GDNF family receptor alpha 2 
(GFRA2) 8p21.3 601956 rs7428041 Decreased risk of 

neuropathy

Glutathione S-transferase theta 
1 (GSTT1) 22q11.2 600436 wild/nul

Susceptibility to 
diabetic neuropathyTranscription factor 7 like 2 

(TCF7L2) 10q25.2-q25.3 602228 rs7903146

OMIM —  Online Mendelian Inheritance in Man;T1DM — type 1 diabetes mellitus

Table 1. Candidate gene studies in diabetic retinopathy, nephropathy, and neuropathy

https://omim.org/geneMap/1/138?start=-3&limit=10&highlight=138
https://omim.org/geneMap/5/419?start=-3&limit=10&highlight=419
https://omim.org/geneMap/3/292?start=-3&limit=10&highlight=292
https://omim.org/geneMap/2/457?start=-3&limit=10&highlight=457
https://omim.org/geneMap/5/693?start=-3&limit=10&highlight=693
https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2910164;toggle_HGVS_names=open
https://omim.org/geneMap/2/634?start=-3&limit=10&highlight=634
https://omim.org/geneMap/8/95?start=-3&limit=10&highlight=95
https://omim.org/geneMap/10/553?start=-3&limit=10&highlight=553
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the graft. However, it is unknown whether and how 
gut microbiota affects the post-transplantation clinical 
course and complications [29]. Despite progression in 
surgical technique, the 10% risk of early pancreas graft 
thrombosis and even higher risk of postoperative infec-
tion remains a clinical challenge, and microbiota may 
play a dominant role in these complications. 

Because genetic factors may affect the progres-
sion of microangiopathy in T1DM before transplant, 
they may also affect the progression or recovery from 
those complications after the transplant. However, 
we have not found any studies shedding any light on 
this relationship. 

Pancreatic islet transplantation 
Pancreatic islet transplantation is a minimally invasive 
alternative to whole pancreas transplantation. Islets are 
isolated from a deceased donor pancreas, suspended 
in a special media, and then infused into the patient 
portal vein via a small catheter placed through the skin 
under local anaesthesia by an interventional radiologist. 
Because no surgery is required, the risk of complication 
is minimal compared to whole pancreas transplanta-
tion. The risk of bleeding from the liver requiring blood 
transfusion is low and below 10%, while the need 
for surgical intervention to stop bleeding is very rare 

— below 1%. Unfortunately, since islets are allogeneic, 
patients still require the same lifelong immunosuppres-
sion as any other transplant recipients, which limits 
its utility again to a small population of patients with 
T1DM. Similarly to whole pancreas transplants, islets 
are offered to desperate patients with problematic hy-
poglycaemia (islet transplant alone — ITA) or kidney 
transplant recipients (islet after kidney — IAK). The lack 
of reimbursement for the procedure in the US due to 
outdated FDA regulations further limits islet transplan-
tation availability [31]. 

Metabolically, islet transplantation restores en-
dogenous insulin secretion and physiologic blood 
glucose regulation as whole pancreas transplantation. 
Five-year insulin independence might be as high as 
50–60% in the most experienced centres, with most of 
the remaining patients maintaining partial islet func-
tion, which protects them from severe hypoglycaemic 
episodes much more effectively than optimal insulin 
therapy [32, 33]. By providing improved blood glucose 
control, islet transplantation also prevents the progres-
sion of microangiopathy, retinopathy, nephropathy, 
and macroangiopathy in the carotid artery despite 
immunosuppression toxicity [34–36]. 

Moreover, because nutrition is essential in the be-
havioural management of T1DM, its significance also 

Figure 1. Pancreas transplant in a patient with type 1 diabetes (T1DM). GC — glycemic control; HG — hypoglycemia; 
SPK — simultaneous kidney and pancreas transplantation; CKD — chronic kidney disease
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seems important after islet transplantation. The study 
of Poggioli et al. showed that anthropometric measures 
— body weight, waist circumference, and fat mass 
— significantly decreased after the procedure. More-
over, the intake of carbohydrates, protein, vitamin B12, 
B6, zinc, and phosphorus was also lower than before 
transplantation [37]. Interestingly, zinc can be beneficial 
posttransplant by improving glucose control and sup-
pressing early graft failure in animal studies, and further 
studies on humans are warranted to confirm the effect. 
[38]. Therefore, perioperative management should 
consider counselling by a qualified dietitian and ap-
propriate nutritional support.

Diet and lifestyle in patients with T1DM

Nutritional therapy and counselling are essential parts 
of T1DM treatment, and they aim to improve and main-
tain glycaemic control and prevent chronic complica-
tions (or to adjust diet if they occur) [39]. However, sev-
eral data show that adherence to dietary guidelines may 
vary considerably among T1DM patients. Results from 
the non-systematic review of Patton showed that adher-
ence to nutritional recommendations among youths 
with T1DM varied between 21 and 95%; however, many 
participants did not adhere to recommended intakes of 
fruits, vegetables, and whole grains [40]. In the study 
of Mohammed et al., 55.7% of patients (only 28.7% of 
participants had T1DM) did not adhere to the recom-
mended dietary approach, and family/friends meetings 
and eating out were the main reasons [41]. However, 

attending to nutritional education and diabetes du-
ration significantly increased nutritive adherence. 
Nutritional education and dietary counselling are es-
sential because other studies have shown that they can 
also be associated with lower glycosylated haemoglobin 
(HbA1c) values [42, 43]. However, studies are missing 
discussing whether adherence to dietary guidelines will 
delay the development of hypoglycaemia unawareness 
and the need for transplantation. 

Due to limited engraftment and limited islet mass 
retrieved and transplanted from a deceased donor pan-
creas, islet transplantation usually provides lower than 
naturally present pancreas islet mass to the patients. As 
a result, islet mass, even in insulin-independent patients, 
is typically only borderline, and islet function can be 
affected by excessive carbohydrate intake, leading to 
chronic islet overstimulation, exhaustion, and graft fail-
ure. The gradual decline of islet graft function without 
signs of rejection has been described. Amyloid deposition 
found in failing islets may indicate misfolding mechanism 
and faulty protein production instead of insulin resulting 
from beta cell metabolic stress [44]. Therefore, dietary 
carbohydrate restrictions and physical activity promote 
stability of the islet graft and insulin independence 
and are highly recommended. However, reports with 
data supporting such recommendations are still lacking. 

Because the aetiopathogenesis of T1DM is still not 
completely understood, it seems thqt environmental 
and genetic factors play a significant role. The same 
factors may lead to the reactivation of autoimmunity 
and ultimately affect the function of transplanted islets. 

Figure 2. The complex relationship between pancreatic islet transplantation and standard treatment of type 1 diabetes (T1DM)
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Therefore, an approach that will include proper nutri-
tion and genetic factors is necessary [45, 47]. However, 
although food compounds potentially modify the ex-
pression of genes involved in the immune response 
— which is vital for T1DM patients — more studies 
investigating gene-nutrient interactions are needed 
beause current evidence regarding nutrigenetics 
and nutrigenomics are scarce [48, 49].

More studies are needed to evaluate the influence 
of nutritional factors during peri- and postoperative 
states on islet transplantation. 

Gut microbiota composition in type 1 
diabetes after pancreatic and pancreatic 
islet transplantation 

The incidence rate of T1DM is increasing dramatically, 
but only 10% of genetically susceptible individuals 
will develop the disease. Therefore, there is no doubt 
that other factors, such as viral and bacterial infections 
and environmental factors, also play a role in develop-
ing T1D [50]. The microbiome may impact the devel-
opment and course of this disease due to its proven 
influence on inflammation and the immune system 
[51]. Gut microbiota may influence signalling through 
TLR family receptors that are directly involved in au-
toimmunity in T1DM [52, 53]. The gut microbiota may 
also affect the development of type 1 diabetes through 
short chain fatty acids (SCFAs). An increased abun-
dance of butyrate producing species was associated 
with an increased risk of T1DM [54, 55]. Other studies 
show that SCFAs protect genetically susceptible mice 
from developing diabetes. The epigenetic action of 
butyrate via histone acetylation at the Foxp3 locus 
promoter is responsible for differentiating regulatory T 
cells or inhibiting histone deacetylases in macrophages 
[56]. However, data on the impact of microbiota are 
still ambiguous [57]. Modulation of the microbiome 
leading to improved composition and diversity of 
the gut microbiota may include early exposure to 
beneficial bacteria, FMT transplants, dietary modifi-
cations, and probiotic and prebiotic supplementation 
[30]. Probiotic administration in early infancy positively 
correlated with decreased pancreatic islet specific au-
toantibodies [58]. Probiotic supplementation immu-
nomodulates pancreatic islet function, which may 
improve glycaemic control and microflora changes to 
protect against systemic manifestations of pancreatic 
islet autoimmunity [59, 60].

The microbiota may also affect glycaemic control 
and, thus, the development of chronic complications, 
particularly in patients with already developed chronic 
kidney disease. In these patients, uraemia exacerbates 
dysbiosis, and regular use of probiotics improves meta-

bolic control by reducing inflammation and oxidative 
stress, which improves renal flow. 

Based on the current knowledge in the field of 
gut microbiota research in diabetes, it can be postulated 
that the understanding of the abnormal composi-
tion of the microorganisms inhabiting the gut may 
contribute to the greater effectiveness of pancreatic 
islet transplantation. It has been shown that the com-
position of microbiota in individuals with T1DM 
is significantly different than in healthy subjects, 
which may be an important modifiable risk factor for 
T1DM complications. The number of some bacterial 
groups (Actinobacteria and Firmicutes) and the ratio 
of Firmicutes to Bacteroidetes is lower in children with 
T1DM. However, these individuals have increased 
amounts of Clostridium, Bacteroides, and Veillonella [61]. 
In addition to quantitative changes, the microbiome of 
children with diabetes is also less diverse and relatively 
less stable [62]. Differences in the gut microbiota may 
also be observed after pancreatic islet transplantation 
in people with type 1 diabetes due to the interaction 
between the gut microbiota and the immune system. 
Studies in animals and humans have shown differences 
in gut microbial diversity before and after allogeneic 
organ transplants (liver, kidney, and haematopoietic 
stem cell transplantation) (29)but also closely related to 
the occurrence and development of various diseases. 
With the development of transplantation technologies, 
allogeneic transplantation has become an effective 
therapy for a variety of end-stage diseases. However, 
complications after transplantation still restrict its 
further development. Post-transplantation compli-
cations are closely associated with a host’s immune 
system. There is also an interaction between a person’s 
gut microbiota and immune system. Recently, animal 
and human studies have shown that gut microbial 
populations and diversity are altered after allogeneic 
transplantations, such as liver transplantation (LT. 
Dysbiosis was also observed to be exacerbated dur-
ing the occurrence of graft versus host (GVHD) [29]. 
Moreover, numerous studies confirm that probiotic 
and prebiotic intake can effectively regulate the intesti-
nal microflora and influence the incidence of posttrans-
plant complications [63, 64]. Fewer complications after 
organ transplantation were also observed in rats with 
prior stool transplantation [65]. Precise identification 
by genetic methods of individuals predisposed to de-
veloping chronic complications may guide their further 
treatment in considering pancreatic islet transplanta-
tion. Assessment of differences in the gut microbiome 
composition in individuals before and after pancreas 
and pancreatic islet cell transplantation may give us 
the perspective to introduce new standards in the form 
of probiotic supplementation or stool transplantation in 
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individuals preparing for or after pancreas or beta-cell 
transplantation.

Summary 

A patient with T1DM has a complex health problem 
developing early in life. A unique interest in the genetic 
determinants of the occurrence of chronic complications 
in diabetes can guide more personalised treatment. Diet 
and microbiota also have an indispensable influence 
on this process. Promoting better outcomes after islet 
and pancreas transplantation will benefit the patient’s 
subsequent prognosis and survival. Investigating 
the interplay between these factors requires a great 
deal of research; nonetheless, it can significantly expand 
the medical knowledge of doctors and patients with 
type 1 diabetes, improve clinical outcomes, and ulti-
mately improve quality of life. 
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