Tom 10 (2024): Continuous Publishing
Artykuł redakcyjny
Opublikowany online: 2024-12-02
Czy ciągłe monitorowanie glikemii zastąpi badanie wartości hemoglobiny A1c w ocenie ryzyka retinopatii (i innych powikłań) u pacjentów z cukrzycą typu 2?
Diabetologia Praktyczna 2024;10:94-96.
Streszczenie
Brak
Referencje
- De Block C, Cheng AYY, Christensen TB, et al. Healthcare Professionals' Knowledge of and Attitudes Towards the Use of Time in Range in Diabetes Management: Online Survey Across Seven Countries. Diabetes Ther. 2023; 14(8): 1399–1413.
- Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019; 42(8): 1593–1603.
- Pratama KG, Angelia M, Amelia JS, et al. Time in Range: Unveiling the Correlation with Diabetic Retinopathy in Type 2 Diabetes: A Systematic Review and Meta-Analysis. Clin Diabetol. 2024; 13(3).
- Lind M, Pivodic A, Svensson AM, et al. HbA level as a risk factor for retinopathy and nephropathy in children and adults with type 1 diabetes: Swedish population based cohort study. BMJ. 2019; 366: I4894.
- Almutairi NM, Alahmadi S, Alharbi M, et al. The Association Between HbA1c and Other Biomarkers With the Prevalence and Severity of Diabetic Retinopathy. Cureus. 2021; 13(1): e12520.
- Xuan J, Wang L, Fan L, et al. Systematic review and meta-analysis of the related factors for diabetic retinopathy. Ann Palliat Med. 2022; 11(7): 2368–2381.
- Kalra S, Mukherjee JJ, Venkataraman S, et al. Hypoglycemia: The neglected complication. Indian J Endocrinol Metab. 2013; 17(5): 819–834.
- Amiel SA. The consequences of hypoglycaemia. Diabetologia. 2021; 64(5): 963–970.
- Ceriello A, Genovese S. Atherogenicity of postprandial hyperglycemia and lipotoxicity. Rev Endocr Metab Disord. 2016; 17(1): 111–116.
- Mah E, Bruno RS. Postprandial hyperglycemia on vascular endothelial function: mechanisms and consequences. Nutr Res. 2012; 32(10): 727–740.
- Nathan DM, Genuth S, Lachin J, et al. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329(14): 977–986.
- Lu J, Home PD, Zhou J. Comparison of Multiple Cut Points for Time in Range in Relation to Risk of Abnormal Carotid Intima-Media Thickness and Diabetic Retinopathy. Diabetes Care. 2020; 43(8): e99–e9e101.
- Yoo JH, Choi MS, Ahn J, et al. Association Between Continuous Glucose Monitoring-Derived Time in Range, Other Core Metrics, and Albuminuria in Type 2 Diabetes. Diabetes Technol Ther. 2020; 22(10): 768–776.
- Yang J, Yang X, Zhao D, et al. Association of time in range, as assessed by continuous glucose monitoring, with painful diabetic polyneuropathy. J Diabetes Investig. 2021; 12(5): 828–836.
- Ranjan AG, Rosenlund SV, Hansen TW, et al. Improved Time in Range Over 1 Year Is Associated With Reduced Albuminuria in Individuals With Sensor-Augmented Insulin Pump-Treated Type 1 Diabetes. Diabetes Care. 2020; 43(11): 2882–2885.
- Jin X, Yang X, Xu Y, et al. Differential correlation between time in range and eGFR or albuminuria in type 2 diabetes. Diabetol Metab Syndr. 2023; 15(1): 92.
- Chai S, Wu S, Xin S, et al. Negative association of time in range and urinary albumin excretion rate in patients with type 2 diabetes mellitus: a retrospective study of inpatients. Chin Med J (Engl). 2022; 135(9): 1052–1056.
- Raj R, Mishra R, Jha N, et al. Time in range, as measured by continuous glucose monitor, as a predictor of microvascular complications in type 2 diabetes: a systematic review. BMJ Open Diabetes Res Care. 2022; 10(1): e002573.
- Lu J, Wang C, Shen Y, et al. Time in Range in Relation to All-Cause and Cardiovascular Mortality in Patients With Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care. 2021; 44(2): 549–555.
- Yoo JH, Kim JH, Yoo JH, et al. Time in Range from Continuous Glucose Monitoring: A Novel Metric for Glycemic Control. Diabetes Metab J. 2020; 44(6): 828–839.
- Bezerra MF, Neves C, Neves JS, et al. Time in range and complications of diabetes: a cross-sectional analysis of patients with Type 1 diabetes. Diabetol Metab Syndr. 2023; 15(1): 244.
- Vigersky RA, McMahon C. The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes. Diabetes Technol Ther. 2019; 21(2): 81–85.
- Beck RW, Bergenstal RM, Cheng P, et al. The Relationships Between Time in Range, Hyperglycemia Metrics, and HbA1c. J Diabetes Sci Technol. 2019; 13(4): 614–626.
- Eliasson B, Allansson Kjölhede E, Salö S, et al. Associations Between HbA1c and Glucose Time in Range Using Continuous Glucose Monitoring in Type 1 Diabetes: Cross-Sectional Population-Based Study. Diabetes Ther. 2024; 15(6): 1301–1312.
- Guo C, Deshpande M, Niu Y, et al. HIF-1α accumulation in response to transient hypoglycemia may worsen diabetic eye disease. Cell Rep. 2023; 42(1): 111976.
- Khan MI, Barlow RB, Weinstock RS. Acute hypoglycemia decreases central retinal function in the human eye. Vision Res. 2011; 51(14): 1623–1626.
- Park JY, Hwang JeH, Kang MJi, et al. Effects of glycemic variability on the progression of diabetic retinopathy among patients with type 2 diabetes. Retina. 2021; 41(7): 1487–1495.