Tom 10 (2024): Continuous Publishing
Artykuł redakcyjny
Opublikowany online: 2024-12-02
Wyświetlenia strony 72
Wyświetlenia/pobrania artykułu 2

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Czy ciągłe monitorowanie glikemii zastąpi badanie wartości hemoglobiny A1c w ocenie ryzyka retinopatii (i innych powikłań) u pacjentów z cukrzycą typu 2?

Magdalena Walicka1, Edward Franek2
Diabetologia Praktyczna 2024;10:94-96.

Streszczenie

Brak

Artykuł dostępny w formacie PDF

Zakup prenumeraty

Posiadasz dostęp do tego artykułu?

Referencje

  1. De Block C, Cheng AYY, Christensen TB, et al. Healthcare Professionals' Knowledge of and Attitudes Towards the Use of Time in Range in Diabetes Management: Online Survey Across Seven Countries. Diabetes Ther. 2023; 14(8): 1399–1413.
  2. Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019; 42(8): 1593–1603.
  3. Pratama KG, Angelia M, Amelia JS, et al. Time in Range: Unveiling the Correlation with Diabetic Retinopathy in Type 2 Diabetes: A Systematic Review and Meta-Analysis. Clin Diabetol. 2024; 13(3).
  4. Lind M, Pivodic A, Svensson AM, et al. HbA level as a risk factor for retinopathy and nephropathy in children and adults with type 1 diabetes: Swedish population based cohort study. BMJ. 2019; 366: I4894.
  5. Almutairi NM, Alahmadi S, Alharbi M, et al. The Association Between HbA1c and Other Biomarkers With the Prevalence and Severity of Diabetic Retinopathy. Cureus. 2021; 13(1): e12520.
  6. Xuan J, Wang L, Fan L, et al. Systematic review and meta-analysis of the related factors for diabetic retinopathy. Ann Palliat Med. 2022; 11(7): 2368–2381.
  7. Kalra S, Mukherjee JJ, Venkataraman S, et al. Hypoglycemia: The neglected complication. Indian J Endocrinol Metab. 2013; 17(5): 819–834.
  8. Amiel SA. The consequences of hypoglycaemia. Diabetologia. 2021; 64(5): 963–970.
  9. Ceriello A, Genovese S. Atherogenicity of postprandial hyperglycemia and lipotoxicity. Rev Endocr Metab Disord. 2016; 17(1): 111–116.
  10. Mah E, Bruno RS. Postprandial hyperglycemia on vascular endothelial function: mechanisms and consequences. Nutr Res. 2012; 32(10): 727–740.
  11. Nathan DM, Genuth S, Lachin J, et al. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329(14): 977–986.
  12. Lu J, Home PD, Zhou J. Comparison of Multiple Cut Points for Time in Range in Relation to Risk of Abnormal Carotid Intima-Media Thickness and Diabetic Retinopathy. Diabetes Care. 2020; 43(8): e99–e9e101.
  13. Yoo JH, Choi MS, Ahn J, et al. Association Between Continuous Glucose Monitoring-Derived Time in Range, Other Core Metrics, and Albuminuria in Type 2 Diabetes. Diabetes Technol Ther. 2020; 22(10): 768–776.
  14. Yang J, Yang X, Zhao D, et al. Association of time in range, as assessed by continuous glucose monitoring, with painful diabetic polyneuropathy. J Diabetes Investig. 2021; 12(5): 828–836.
  15. Ranjan AG, Rosenlund SV, Hansen TW, et al. Improved Time in Range Over 1 Year Is Associated With Reduced Albuminuria in Individuals With Sensor-Augmented Insulin Pump-Treated Type 1 Diabetes. Diabetes Care. 2020; 43(11): 2882–2885.
  16. Jin X, Yang X, Xu Y, et al. Differential correlation between time in range and eGFR or albuminuria in type 2 diabetes. Diabetol Metab Syndr. 2023; 15(1): 92.
  17. Chai S, Wu S, Xin S, et al. Negative association of time in range and urinary albumin excretion rate in patients with type 2 diabetes mellitus: a retrospective study of inpatients. Chin Med J (Engl). 2022; 135(9): 1052–1056.
  18. Raj R, Mishra R, Jha N, et al. Time in range, as measured by continuous glucose monitor, as a predictor of microvascular complications in type 2 diabetes: a systematic review. BMJ Open Diabetes Res Care. 2022; 10(1): e002573.
  19. Lu J, Wang C, Shen Y, et al. Time in Range in Relation to All-Cause and Cardiovascular Mortality in Patients With Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care. 2021; 44(2): 549–555.
  20. Yoo JH, Kim JH, Yoo JH, et al. Time in Range from Continuous Glucose Monitoring: A Novel Metric for Glycemic Control. Diabetes Metab J. 2020; 44(6): 828–839.
  21. Bezerra MF, Neves C, Neves JS, et al. Time in range and complications of diabetes: a cross-sectional analysis of patients with Type 1 diabetes. Diabetol Metab Syndr. 2023; 15(1): 244.
  22. Vigersky RA, McMahon C. The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes. Diabetes Technol Ther. 2019; 21(2): 81–85.
  23. Beck RW, Bergenstal RM, Cheng P, et al. The Relationships Between Time in Range, Hyperglycemia Metrics, and HbA1c. J Diabetes Sci Technol. 2019; 13(4): 614–626.
  24. Eliasson B, Allansson Kjölhede E, Salö S, et al. Associations Between HbA1c and Glucose Time in Range Using Continuous Glucose Monitoring in Type 1 Diabetes: Cross-Sectional Population-Based Study. Diabetes Ther. 2024; 15(6): 1301–1312.
  25. Guo C, Deshpande M, Niu Y, et al. HIF-1α accumulation in response to transient hypoglycemia may worsen diabetic eye disease. Cell Rep. 2023; 42(1): 111976.
  26. Khan MI, Barlow RB, Weinstock RS. Acute hypoglycemia decreases central retinal function in the human eye. Vision Res. 2011; 51(14): 1623–1626.
  27. Park JY, Hwang JeH, Kang MJi, et al. Effects of glycemic variability on the progression of diabetic retinopathy among patients with type 2 diabetes. Retina. 2021; 41(7): 1487–1495.