Tom 10 (2024): Continuous Publishing
Artykuł przeglądowy
Opublikowany online: 2024-09-20
Wyświetlenia strony 259
Wyświetlenia/pobrania artykułu 10

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Największe wady skal oceny ryzyka sercowo-naczyniowego

Ibtissam Talha1, Noureddine Elkhoudri1, Abderraouf Hilali1
Diabetologia Praktyczna 2024;10:75-81.

Streszczenie

Badania epidemiologiczne przeprowadzone w różnych kohortach populacyjnych zaowocowały stworzeniem licznych modeli do predykcji ryzyka sercowo-naczyniowego. Jednak narzędzia te mają pewne wady, które ograniczają możliwość ich stosowania. Celem niniejszej pracy jest podsumowanie ograniczeń najbardziej znanych obecnie modeli oceny ryzyka sercowo-naczyniowego poprzez przedstawienie krytycznych analiz przeprowadzonych w tym zakresie w celu zaoferowania lekarzom kompleksowego wyjaśnienia tych barier. W analizach krytycznych wykazano, że skale te mają liczne ograniczenia, które mogą mieć wpływ na ich skuteczność. W większości z tych modeli ocenia się ryzyko sercowo-naczyniowe na podstawie klasycznych czynników ryzyka i innych przeszkód, co negatywnie wpływa na ich czułość. Naukowcy poczynili znaczące postępy w ulepszaniu modeli ryzyka sercowo-naczyniowego, dostosowując je do wielu różnych populacji i opracowując skale do szacowania ryzyka sercowo-naczyniowego uwzględniające wszystkie dotychczasowe ograniczenia. Lepsze zrozumienie tych kwestii mogłoby poprawić stratyfikację ryzyka sercowo-naczyniowego.

Artykuł dostępny w formacie PDF

Zakup prenumeraty

Posiadasz dostęp do tego artykułu?

Referencje

  1. WHO, Cardiovascular diseases, World Health Organization, Geneva, 2017. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (23.05.2023).
  2. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392(10159): 1736–1788.
  3. Gheorghe A, Griffiths U, Murphy A, et al. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health. 2018; 18(1): 975.
  4. Hill S, Spink J, Cadilhac D, et al. Absolute risk representation in cardiovascular disease prevention: comprehension and preferences of health care consumers and general practitioners involved in a focus group study. BMC Public Health. 2010; 10: 108.
  5. Perk J, De Backer G, Gohlke H, et al. Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice, European Association for Cardiovascular Prevention and Rehabilitation. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012): The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Atherosclerosis. 2012; 223(1): 1–68.
  6. Piepoli MF, Hoes AW, Agewall S, et al. ESC Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016; 37(29): 2315–2381.
  7. Quispe R, Ferraro RA, Cainzos-Achirica M. Risk assessment for cardiovascular disease prevention: comparing the American and European approaches. American College of Cardiology. 2019.
  8. Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the Framingham Study. Am J Cardiol. 1976; 38(1): 46–51.
  9. Anderson KM, Odell PM, Wilson PW, et al. Cardiovascular disease risk profiles. Am Heart J. 1991; 121(1 Pt 2): 293–298.
  10. Wilson PW, D'Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation. 1998; 97(18): 1837–1847.
  11. Andersson C, Nayor M, Tsao CW, et al. Framingham Heart Study: JACC Focus Seminar, 1/8. J Am Coll Cardiol. 2021; 77(21): 2680–2692.
  12. Voss R, Cullen P, Schulte H, et al. Prediction of risk of coronary events in middle-aged men in the Prospective Cardiovascular Münster Study (PROCAM) using neural networks. Int J Epidemiol. 2002; 31(6): 1253–62; discussion 1262.
  13. Assmann G, Schulte H, Cullen P, et al. Assessing risk of myocardial infarction and stroke: new data from the Prospective Cardiovascular Münster (PROCAM) study. Eur J Clin Invest. 2007; 37(12): 925–932.
  14. Woodward M, Brindle P, Tunstall-Pedoe H, et al. SIGN group on risk estimation. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart. 2007; 93(2): 172–176.
  15. Piepoli MF, Hoes AW, Agewall S, et al. Authors/Task Force Members, Additional Contributor: Simone Binno (Italy), Document Reviewers:. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol. 2016; 23(11): NP1–NP96.
  16. Ridker PM, Buring JE, Rifai N, et al. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007; 297(6): 611–619.
  17. Klisić A, Kavarić N, Bjelaković B, et al. Cardiovascular Risk Assessed by Reynolds Risk Score in Relation to Waist Circumference in Apparently Healthy Middle-Aged Population in Montenegro. Acta Clin Croat. 2018; 57(1): 22–30.
  18. Collins GS, Altman DG. An independent external validation and evaluation of QRISK cardiovascular risk prediction: a prospective open cohort study. BMJ. 2009; 339: b2584.
  19. Collins GS, Altman DG. Report to the Department of Health: independent validation of QRISK on the THIN database. University of Oxford. 2009.
  20. Marrugat J, Vila J, Baena-Díez J, et al. Validez relativa de la estimación del riesgo cardiovascular a 10 años en una cohorte poblacional del estudio REGICOR. Revista Española de Cardiología. 2011; 64(5): 385–394.
  21. Simons LA, Simons J, McCallum J, et al. Lifestyle factors and risk of dementia: Dubbo Study of the elderly. Med J Aust. 2006; 184(2): 68–70.
  22. Chambless LE, Heiss G, Shahar E, et al. Prediction of ischemic stroke risk in the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2004; 160(3): 259–269.
  23. Palmieri L, Panico S, Vanuzzo D, et al. La valutazione del rischio cardiovascolare globale assoluto: il punteggio individuale del Progetto CUORE” [Evaluation of the global cardiovascular absolute risk: the Progetto CUORE individual score]. Ann Ist Super Sanita. 2004; 40(4): 393–399.
  24. Hansson L, Hedner T, Himmelman A. The 1999 WHO-ISH Guidelines for the Management of Hypertension New targets, new treatment and a comprehensive approach to total cardiovascular risk reduction. Blood Pressure. 2010; 8(sup1): 3–5.
  25. Goff DC, Lloyd-Jones DM, Bennett G, et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 129(25 Suppl 2): S49–S73.
  26. Albarqouni L, Doust JA, Magliano D, et al. External validation and comparison of four cardiovascular risk prediction models with data from the Australian Diabetes, Obesity and Lifestyle study. Med J Aust. 2019; 210(4): 161–167.
  27. Betts MB, Milev S, Hoog M, et al. Comparison of Recommendations and Use of Cardiovascular Risk Equations by Health Technology Assessment Agencies and Clinical Guidelines. Value Health. 2019; 22(2): 210–219.
  28. Selvarajah S, Kaur G, Haniff J, et al. Comparison of the Framingham Risk Score, SCORE and WHO/ISH cardiovascular risk prediction models in an Asian population. Int J Cardiol. 2014; 176(1): 211–218.
  29. Liew SM, Doust J, Glasziou P. Cardiovascular risk scores do not account for the effect of treatment: a review. Heart. 2011; 97(9): 689–697.
  30. Studziński K, Tomasik T, Krzysztoń J, et al. Effect of using cardiovascular risk scoring in routine risk assessment in primary prevention of cardiovascular disease: an overview of systematic reviews. BMC Cardiovasc Disord. 2019; 19(1): 11.
  31. Siontis GCM, Tzoulaki I, Siontis KC, et al. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ. 2012; 344: e3318.
  32. Cooney MT, Selmer R, Lindman A, et al. SCORE and CONOR investigators. Cardiovascular risk estimation in older persons: SCORE O.P. Eur J Prev Cardiol. 2016; 23(10): 1093–1103.
  33. Bauduceau B, Bordier L. New tools to evaluate the cardiovascular risk [Nouveaux outils d’évaluation du risque cardiovasculaire]. Médecine des Maladies Métaboliques. 2019; 13(1): 21–26.
  34. Salinas A, Espinosa C. Comment on “Comparison of the REGICOR and SCORE Function Charts…”. Revista Española de Cardiología (English Edition). 2007; 60(11): 1213–1214.
  35. Sofogianni A, Stalikas N, Antza C, et al. Cardiovascular Risk Prediction Models and Scores in the Era of Personalized Medicine. J Pers Med. 2022; 12(7).
  36. Jiang Y, Ma R, Guo H, et al. External validation of three atherosclerotic cardiovascular disease risk equations in rural areas of Xinjiang, China. BMC Public Health. 2020; 20(1): 1471.
  37. DeFilippis AP, Young R, McEvoy JW, et al. Risk score overestimation: the impact of individual cardiovascular risk factors and preventive therapies on the performance of the American Heart Association-American College of Cardiology-Atherosclerotic Cardiovascular Disease risk score in a modern multi-ethnic cohort. Eur Heart J. 2017; 38(8): 598–608.
  38. Yeboah J, McClelland RL, Polonsky TS, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012; 308(8): 788–795.
  39. Backholer K, Hirakawa Y, Tonkin A, et al. Development of an Australian cardiovascular disease mortality risk score using multiple imputation and recalibration from national statistics. BMC Cardiovasc Disord. 2017; 17(1): 17.
  40. Gulayin PE, Danae G, Gutierez L, et al. External Validation of Cardiovascular Risk Scores in the Southern Cone of Latin America: Which Predicts Better? [Validación externa de ecuaciones de riesgo cardiovascular en el Cono Sur de Latinoamérica: ¿cuál predice mejor?]. Rev Argent Cardiol. 2018; 86(1): 13–18.
  41. Wu Y, Liu X, Li X, et al. USA-PRC Collaborative Study of Cardiovascular and Cardiopulmonary Epidemiology Research Group, China Multicenter Collaborative Study of Cardiovascular Epidemiology Research Group. Estimation of 10-year risk of fatal and nonfatal ischemic cardiovascular diseases in Chinese adults. Circulation. 2006; 114(21): 2217–2225.
  42. Payne RA. Cardiovascular risk. Br J Clin Pharmacol. 2012; 74(3): 396–410.
  43. Woodward M. Cardiovascular Disease and the Female Disadvantage. Int J Environ Res Public Health. 2019; 16(7).
  44. Baart SJ, Dam V, Scheres LJJ, et al. CREW consortium. Cardiovascular risk prediction models for women in the general population: A systematic review. PLoS One. 2019; 14(1): e0210329.
  45. Clearfield MB. C-reactive protein: a new risk assessment tool for cardiovascular disease. J Am Osteopath Assoc. 2005; 105(9): 409–416.
  46. Khambhati J, Allard-Ratick M, Dhindsa D, et al. The art of cardiovascular risk assessment. Clin Cardiol. 2018; 41(5): 677–684.
  47. Hajifathalian K, Ueda P, Lu Y, et al. A novel risk score to predict cardiovascular disease risk in national populations (Globorisk): a pooled analysis of prospective cohorts and health examination surveys. Lancet Diabetes Endocrinol. 2015; 3(5): 339–355.
  48. Damen JA, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ. 2016; 353: i2416.
  49. Johns I, Moschonas KE, Medina J, et al. Risk classification in primary prevention of CVD according to QRISK2 and JBS3 'heart age', and prevalence of elevated high-sensitivity C reactive protein in the UK cohort of the EURIKA study. Open Heart. 2018; 5(2): e000849.
  50. Islam JY, Zaman MM, Moniruzzaman M, et al. Estimation of total cardiovascular risk using the 2019 WHO CVD prediction charts and comparison of population-level costs based on alternative drug therapy guidelines: a population-based study of adults in Bangladesh. BMJ Open. 2020; 10(7): e035842.
  51. WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019; 7(10): e1332–e1345.
  52. Pandya A, Weinstein MC, Gaziano TA. A comparative assessment of non-laboratory-based versus commonly used laboratory-based cardiovascular disease risk scores in the NHANES III population. PLoS One. 2011; 6(5): e20416.