Tom 10 (2024): Continuous Publishing
Praca badawcza (oryginalna)
Opublikowany online: 2024-09-20
Wyświetlenia strony 25
Wyświetlenia/pobrania artykułu 0

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Stężenie kalprotektyny w kale oraz ferrytyny i białka C-reaktywnego w surowicy u osób z nieswoistym zapaleniem jelit współistniejącym z cukrzycą typu 2: badanie retrospektywne

Vanda Sargautiene12, Didzis Gavars2, Renate Ligere1
Diabetologia Praktyczna 2024;10:40-50.

Streszczenie

Cel: Badanie zaplanowano w celu przeprowadzenia analizy porównawczej stężeń białka C-reaktywnego (CRP, C-reactive protein), ferrytyny w surowicy (SF, serum ferritin) i kalprotektyny w kale (CALP, fecal calprotectin) między osobami z nieswoistym zapaleniem jelit (IBD, inflammatory bowel disease) i cukrzycą typu 2 (T2D, type 2 diabetes) a osobami z IBD bez T2D. Materiał i metody: Ta retrospektywna analiza laboratoryjnej bazy danych obejmowała 2274 osoby, u których zdiagnozowano IBD, podzielone na dwie kohorty: 2125 pacjentów z IBD bez T2D i 149 pacjentów z IBD z T2D. Różnice między grupami w zmiennych ciągłych określono za pomocą nieparametrycznego testu U Manna-Whitneya. Wyniki: W badaniu wzięło udział 925 mężczyzn i 1200 kobiet chorych na IBD bez T2D. Średnia wieku mężczyzn wynosiła 41,6 ± 15,1 roku, a średnia wieku kobiet 47,1 ± 17,4 roku. Druga kohorta obejmowała 51 mężczyzn i 98 kobiet chorych na IBD i T2D. Średnia wieku mężczyzn w tej grupie wynosiła 58,1 ± 13,9 roku, a średnia wieku kobiet 64,2 ± 12,1 roku. U osób, u których współwystępowały IBD i T2D, stwierdzono podwyższone stężenia CRP i SF w porównaniu z osobami z IBD bez T2D, a różnica była istotna statystycznie (p < 0,05). Wykazano, że u kobiet z IBD i współistniejącą T2D wartości CALP były zwiększone w porównaniu z osobami z IBD bez T2D (p < 0,01), jednakże nie odnotowano takiej różnicy u mężczyzn. Wnioski: Wyniki tych obserwacji wskazują na potrzebę dalszych badań nad różnicami zależnymi od płci i potencjalną obecnością dodatkowych stanów zapalnych u osób z IBD i T2D.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Jess T, Jensen BW, Andersson M, et al. Inflammatory Bowel Diseases Increase Risk of Type 2 Diabetes in a Nationwide Cohort Study. Clin Gastroenterol Hepatol. 2020; 18(4): 881–888.e1.
  2. Hyun CK. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. Int J Mol Sci. 2021; 22(17).
  3. Din H, Anderson AJ, Ramos Rivers C, et al. Disease Characteristics and Severity in Patients With Inflammatory Bowel Disease With Coexistent Diabetes Mellitus. Inflamm Bowel Dis. 2020; 26(9): 1436–1442.
  4. Dignass A, Farrag K, Stein J. Limitations of Serum Ferritin in Diagnosing Iron Deficiency in Inflammatory Conditions. Int J Chronic Dis. 2018; 2018: 9394060.
  5. Li J, Xu M, Qian W, et al. Clinical value of fecal calprotectin for evaluating disease activity in patients with Crohn's disease. Front Physiol. 2023; 14: 1186665.
  6. D'Amico F, Nancey S, Danese S, et al. A Practical Guide for Faecal Calprotectin Measurement: Myths and Realities. J Crohns Colitis. 2021; 15(1): 152–161.
  7. Zamora A. Calprotectin as a Biological Indicator in Nutrition. In: Méndez AI, Fernández-Real JM. ed. Biomarkers in Nutrition. Biomarkers in Disease: Methods, Discoveries and Applications. Springer , Cham 2022: 371–387.
  8. Chen P, Zhou G, Lin J, et al. Serum Biomarkers for Inflammatory Bowel Disease. Front Med (Lausanne). 2020; 7: 123.
  9. Serrano-Gómez G, Mayorga L, Oyarzun I, et al. Dysbiosis and relapse-related microbiome in inflammatory bowel disease: A shotgun metagenomic approach. Comput Struct Biotechnol J. 2021; 19: 6481–6489.
  10. Mecklenburg I, Reznik D, Fasler-Kan E, et al. Swiss IBD Cohort Study Group. Serum hepcidin concentrations correlate with ferritin in patients with inflammatory bowel disease. J Crohns Colitis. 2014; 8(11): 1392–1397.
  11. Tummalacharla SC, Pavuluri P, Maram SR, et al. Serum Activities of Ferritin Among Controlled and Uncontrolled Type 2 Diabetes Mellitus Patients. Cureus. 2022; 14(5): e25155.
  12. Wang YL, Koh WP, Yuan JM, et al. Plasma ferritin, C-reactive protein, and risk of incident type 2 diabetes in Singapore Chinese men and women. Diabetes Res Clin Pract. 2017; 128: 109–118.
  13. Kotla NK, Dutta P, Parimi S, et al. The Role of Ferritin in Health and Disease: Recent Advances and Understandings. Metabolites. 2022; 12(7).
  14. Northrop-Clewes CA. Interpreting indicators of iron status during an acute phase response--lessons from malaria and human immunodeficiency virus. Ann Clin Biochem. 2008; 45(Pt 1): 18–32.
  15. Sciacqua A, Ventura E, Tripepi G, et al. Ferritin modifies the relationship between inflammation and arterial stiffness in hypertensive patients with different glucose tolerance. Cardiovasc Diabetol. 2020; 19(1): 123.
  16. Son NE. Influence of ferritin levels and inflammatory markers on HbA1c in the Type 2 Diabetes mellitus patients. Pak J Med Sci. 2019; 35(4): 1030–1035.
  17. Peoc’h K, Manceau H, Joly F, et al. Iron deficiency in chronic inflammatory bowel diseases: an update. J Lab Precis Med. 2021; 6: 31–31.
  18. Zhang B, Gulati A, Alipour O, et al. Relapse From Deep Remission After Therapeutic De-escalation in Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. J Crohns Colitis. 2020; 14(10): 1413–1423.
  19. Rohm TV, Meier DT, Olefsky JM, et al. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022; 55(1): 31–55.
  20. Thode HC. Testing for normality. Marcel Dekker, Inc. Marcel Dekker, Inc., New York 2002.
  21. Sargautiene V. Raw lab data of Fecal Calprotectin, Serum Ferritin and C-Reactive Protein in Individuals Suffering from Inflammatory Bowel Disease with coexistent Type 2 Diabetes Mellitus in Latvia, Mendeley Data, V1, doi: 10.17632/jd8bwnzvcg.1. https://data.mendeley.com/datasets/jd8bwnzvcg/1 (16.12.2023).
  22. Bulus M. pwrss: Statistical Power and Sample Size Calculation Tools [Internet]. 2023. https://CRAN.R-project.org/package=pwrss (20.01.2024).
  23. Dash C, Behera A, Dehuri S, et al. An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal. 2023; 6: 100164.
  24. Tomczak M, Tomczak E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in Sport Sciences. 2014; 21(1): 19–25.
  25. R Core Team. R: A language and environment for statistical computing [Internet]. R Foundation for Statistical Computing, Vienna, Austria; 2022. https://www.R-project.org/ (20.01.2024).
  26. Patil I. Visualizations with statistical details: The 'ggstatsplot' approach. Journal of Open Source Software. 2021; 6(61): 3167.
  27. Wickham H, Averick M, Bryan J, et al. Welcome to the Tidyverse. Journal of Open Source Software. 2019; 4(43): 1686.
  28. Kassambara A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots, 2022. https://cran.r-project.org/web/packages/ggpubr/index.html (20.01.2024).
  29. RStudio Team. RStudio: Integrated Development Environment for R [Internet]. RStudio, PBC, Boston, MA; 2022. http://www.rstudio.com/ (20.01.2024).
  30. The Centre for Disease Prevention and Control of Latvia. Health Statistics Database. CDG015. Incidence and prevalence of diabetes mellitus by type of diabetes, genders and age groups. https://statistika.spkc.gov.lv/pxweb/en/Health/Health__Saslimstiba_Slimibu_Izplatiba__Cukura_diabets/CDG015_tips_vecuma_grupa_dzimums.px/ (20.01.2024).
  31. Xiao X, Wu X, Yi Lu, et al. Causal linkage between type 2 diabetes mellitus and inflammatory bowel disease: an integrated Mendelian randomization study and bioinformatics analysis. Front Endocrinol (Lausanne). 2024; 15: 1275699.
  32. Kang EAe, Han K, Chun J, et al. Increased Risk of Diabetes in Inflammatory Bowel Disease Patients: A Nationwide Population-based Study in Korea. J Clin Med. 2019; 8(3).
  33. Kamp K, Li N, Lachance DM, et al. Interpersonal Variability in Gut Microbial Calprotectin Metabolism. Gastro Hep Adv. 2022; 1(5): 853–856.
  34. Long C, Feng H, Duan W, et al. Prevalence of polycystic ovary syndrome in patients with type 2 diabetes: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2022; 13: 980405.
  35. Azramezani Kopi T, Shahrokh S, Mirzaei S, et al. The role of serum calprotectin as a novel biomarker in inflammatory bowel diseases: a review study. Gastroenterol Hepatol Bed Bench. 2019; 12(3): 183–189.
  36. Chen S, Jiang M, Ding T, et al. Calprotectin is a potential prognostic marker for polycystic ovary syndrome. Ann Clin Biochem. 2017; 54(2): 253–257.
  37. Stanimirovic J, Radovanovic J, Banjac K, et al. Role of C-Reactive Protein in Diabetic Inflammation. Mediators Inflamm. 2022; 2022: 3706508.
  38. Ellulu MS, Samouda H. Clinical and biological risk factors associated with inflammation in patients with type 2 diabetes mellitus. BMC Endocr Disord. 2022; 22(1): 16.
  39. Landry A, Docherty P, Ouellette S, et al. Causes and outcomes of markedly elevated C-reactive protein levels. Can Fam Physician. 2017; 63(6): e316–e323.
  40. Sahebkar A, Habibi P, Talebian F, et al. Association between High-Sensitivity C-Reactive Protein and Metabolic Syndrome and Its Components in Older Adults: Findings from Neyshabur Longitudinal Study on Ageing (NeLSA). Clinical Diabetology. 2024; 1(1): 52–59.
  41. Saklayen MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018; 20(2): 12.
  42. Peyrin-Biroulet L, Bouguen G, Laharie D, et al. CARENFER study group. Iron Deficiency in Patients with Inflammatory Bowel Diseases: A Prospective Multicenter Cross-Sectional Study. Dig Dis Sci. 2022; 67(12): 5637–5646.
  43. Dignass AU, Gasche C, Bettenworth D, et al. European Crohn’s and Colitis Organisation [ECCO]. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J Crohns Colitis. 2015; 9(3): 211–222.
  44. Huang JH, Li RH, Tsai LC. Dual nature of ferritin for hematologic, liver functional, and metabolic parameters in older diabetic patients. Sci Rep. 2023; 13(1): 20207.