Tom 19, Nr 4 (2022)
Artykuł przeglądowy
Opublikowany online: 2023-03-31

dostęp otwarty

Wyświetlenia strony 665
Wyświetlenia/pobrania artykułu 191
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Nadciśnienie tętnicze i jego leczenie a prewencja zaburzeń funkcji poznawczych — rola połączenia walsartanu i amlodipiny. Przegląd dla lekarza praktyka

Stanisław Surma1, Michał O. Zembala23
Choroby Serca i Naczyń 2022;19(4):160-177.

Streszczenie

Nadciśnienie tętnicze i demencja stanowią istotny problem współczesnej medycyny. Wśród wielu czynników ryzyka rozwoju zaburzeń funkcji poznawczych, szczególnie u osób w średnim wieku, znajduje się nadciśnienie tętnicze. Związek między nadciśnieniem tętniczym a zaburzeniami funkcji poznawczych jest złożony i nie ogranicza się jedynie do zwiększonego ciśnienia tętniczego, ale obejmuje także ciśnienie tętna, prędkość fali tętna, zmienność ciśnienia tętniczego oraz hipotonię ortostatyczną. Leki przeciwnadciśnieniowe są jedynymi znanymi lekami, które mogą zmniejszać ryzyko wystąpienia demencji. Szczególną rolę w prewencji zaburzeń funkcji poznawczych pełnią antagoniści wapnia (amlodipina) oraz sartany (walsartan). Leki te charakteryzują się korzystnym wpływem na wszystkie istotne w prewencji demencji czynniki związane z kontrolą ciśnienia tętniczego. Co więcej, są korzystne w prewencji udaru mózgu, który jest ważnym czynnikiem ryzyka demencji. Możliwość stosowania amlodipiny w połączeniu z walsartanem w postaci jednej tabletki dodatkowo zwiększa przestrzeganie zaleceń terapeutycznych, co przekłada się na lepszą kontrolę ciśnienia tętniczego i w konsekwencji na lepszą prewencję zaburzeń funkcji poznawczych. W niniejszym artykule podsumowano związek między nadciśnieniem tętniczym i jego leczeniem, ze szczególnym uwzględnieniem amlodipiny i walsartanu, a ryzykiem zaburzeń funkcji poznawczych.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021; 398(10304): 957–980.
  2. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022; 7(2): e105–e125.
  3. Wolska-Bułach A, Wierzowiecka M, Niklas K, et al. Cognitive dysfunctions in patients with hypertension — pathogenesis and treatment. Arterial Hypertens. 2022; 26(2): 45–59.
  4. Małyszko J, Mastej M, Banach M, et al. Do we know more about hypertension in Poland after the May Measurement Month 2017?-Europe. Eur Heart J Suppl. 2019; 21(Suppl D): D97–D9D100.
  5. Karczewska B, Bień B. Dementia in the aging population of Poland: challenges for medical and social care. Health Prob. Civil. 2019; 13(3): 161–169.
  6. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020; 396(10248): 413–446.
  7. Ungvari Z, Toth P, Tarantini S, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol. 2021; 17(10): 639–654.
  8. Takeda S, Rakugi H, Morishita R. Roles of vascular risk factors in the pathogenesis of dementia. Hypertens Res. 2020; 43(3): 162–167.
  9. Armario P, Gómez-Choco M. Is it possible to prevent cognitive decline among middle-aged and older hypertensive individuals? Hypertens Res. 2022; 45(6): 1079–1081.
  10. Jung H, Yang PS, Kim D, et al. Associations of hypertension burden on subsequent dementia: a population-based cohort study. Sci Rep. 2021; 11(1): 12291.
  11. Messerli FH, Streit S, Grodzicki T. The oldest old: does hypertension become essential again? Eur Heart J. 2018; 39(33): 3144–3146.
  12. Li C, Zhu Y, Ma Y, et al. Association of cumulative blood pressure with cognitive decline, dementia, and mortality. J Am Coll Cardiol. 2022; 79(14): 1321–1335.
  13. McGrath ER, Beiser AS, DeCarli C, et al. Blood pressure from mid- to late life and risk of incident dementia. Neurology. 2017; 89(24): 2447–2454.
  14. Gottesman RF, Schneider ALC, Albert M, et al. Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study. JAMA Neurol. 2014; 71(10): 1218–1227.
  15. Mahinrad S, Kurian S, Garner CR, et al. Cumulative blood pressure exposure during young adulthood and mobility and cognitive function in midlife. Circulation. 2020; 141(9): 712–724.
  16. Ou YN, Tan CC, Shen XN, et al. Blood pressure and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 209 prospective studies. Hypertension. 2020; 76(1): 217–225.
  17. Peters R, Beckett N, Fagard R, et al. Increased pulse pressure linked to dementia: further results from the Hypertension in the Very Elderly Trial — HYVET. J Hypertens. 2013; 31(9): 1868–1875.
  18. Zhou R, Wei S, Wang Y, et al. Pulse pressure is associated with rapid cognitive decline over 4 years: a population-based cohort study. Brain Sci. 2022; 12(12).
  19. Jung Y, Choi DW, Park S, et al. Association between pulse pressure and onset of dementia in an elderly Korean population: a cohort study. Int J Environ Res Public Health. 2020; 17(5).
  20. Sha T, Cheng W, Yan Y. Prospective associations between pulse pressure and cognitive performance in Chinese middle-aged and older population across a 5-year study period. Alzheimers Res Ther. 2018; 10(1): 29.
  21. Waldstein SR, Rice SC, Thayer JF, et al. Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension. 2008; 51(1): 99–104.
  22. Zang J, Shi J, Liang J, et al. Pulse pressure, cognition, and white matter lesions: a mediation analysis. Front Cardiovasc Med. 2021; 8: 654522.
  23. Liu L, Hayden KM, May NS, et al. Association between blood pressure levels and cognitive impairment in older women: a prospective analysis of the Women's Health Initiative Memory Study. Lancet Healthy Longev. 2022; 3(1): e42–e53.
  24. Liu Q, Fang J, Cui C, et al. Association of aortic stiffness and cognitive decline: a systematic review and meta-analysis. Front Aging Neurosci. 2021; 13: 680205.
  25. Alvarez-Bueno C, Cunha PG, Martinez-Vizcaino V, et al. Arterial stiffness and cognition among adults: a systematic review and meta-analysis of observational and longitudinal studies. J Am Heart Assoc. 2020; 9(5): e014621.
  26. Zhou TL, Kroon AA, van Sloten TT, et al. Greater blood pressure variability is associated with lower cognitive performance. Hypertension. 2019; 73(4): 803–811.
  27. Yoo JE, Shin DW, Han K, et al. Blood pressure variability and the risk of dementia: a nationwide cohort study. Hypertension. 2020; 75(4): 982–990.
  28. Jia P, Lee HWY, Chan JYC, et al. Long-term blood pressure variability increases risks of dementia and cognitive decline: a meta-analysis of longitudinal studies. Hypertension. 2021; 78(4): 996–1004.
  29. de Heus RAA, Tzourio C, Lee EJ, et al. VARIABLE BRAIN Consortium. Association between blood prressure variability with dementia and cognitive impairment: a systematic review and meta-analysis. Hypertension. 2021; 78(5): 1478–1489.
  30. Sible IJ, Yew B, Jang JY, et al. Blood pressure variability and plasma Alzheimer's disease biomarkers in older adults. Sci Rep. 2022; 12(1): 17197.
  31. Fujiwara T, Hoshide S, Kanegae H, et al. Exaggerated blood pressure variability is associated with memory impairment in very elderly patients. J Clin Hypertens (Greenwich). 2018; 20(4): 637–644.
  32. Wolters FJ, Mattace-Raso FUS, Koudstaal PJ, et al. Heart Brain Connection Collaborative Research Group. Orthostatic hypotension and the long-term risk of dementia: a population-based study. PLoS Med. 2016; 13(10): e1002143.
  33. Min M, Shi T, Sun C, et al. The association between orthostatic hypotension and cognition and stroke: a meta-analysis of prospective cohort studies. Blood Press. 2020; 29(1): 3–12.
  34. Peters R, Anstey KJ, Booth A, et al. Orthostatic hypotension and symptomatic subclinical orthostatic hypotension increase risk of cognitive impairment: an integrated evidence review and analysis of a large older adult hypertensive cohort. Eur Heart J. 2018; 39(33): 3135–3143.
  35. Blood Pressure Lowering Treatment Trialists' Collaboration. Age-stratified and blood-pressure-stratified effects of blood-pressure-lowering pharmacotherapy for the prevention of cardiovascular disease and death: an individual participant-level data meta-analysis. Lancet. 2021; 398(10305): 1053–1064.
  36. Kuźma E, Lourida I, Moore SF, et al. Stroke and dementia risk: a systematic review and meta-analysis. Alzheimers Dement. 2018; 14(11): 1416–1426.
  37. Sexton E, McLoughlin A, Williams DJ, et al. Systematic review and meta-analysis of the prevalence of cognitive impairment no dementia in the first year post-stroke. Eur Stroke J. 2019; 4(2): 160–171.
  38. Qin J, He Z, Wu L, et al. Prevalence of mild cognitive impairment in patients with hypertension: a systematic review and meta-analysis. Hypertens Res. 2021; 44(10): 1251–1260.
  39. Ding J, Davis-Plourde KL, Sedaghat S, et al. Antihypertensive medications and risk for incident dementia and Alzheimer's disease: a meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol. 2020; 19(1): 61–70.
  40. Hughes D, Judge C, Murphy R, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis. JAMA. 2020; 323(19): 1934–1944.
  41. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering treatment on cardiovascular outcomes and mortality: 13 - benefits and adverse events in older and younger patients with hypertension: overview, meta-analyses and meta-regression analyses of randomized trials. J Hypertens. 2018; 36(8): 1622–1636.
  42. Tykarski A, Filipiak KJ, Januszewicz A, et al. Zasady postępowania w nadciśnieniu tętniczym — 2019 rok. Nadciśnienie Tętnicze w Praktyce. 2019; 5(1): 1–86.
  43. Bavishi C, Bangalore S, Messerli FH. Outcomes of intensive blood pressure lowering in older hypertensive patients. J Am Coll Cardiol. 2017; 69(5): 486–493.
  44. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering treatment on cardiovascular outcomes and mortality: 13 - benefits and adverse events in older and younger patients with hypertension: overview, meta-analyses and meta-regression analyses of randomized trials. J Hypertens. 2018; 36(8): 1622–1636.
  45. Dallaire-Théroux C, Quesnel-Olivo MH, Brochu K, et al. Evaluation of intensive vs standard blood pressure reduction and association with cognitive decline and dementia: a systematic review and meta-analysis. JAMA Netw Open. 2021; 4(11): e2134553.
  46. den Brok MG, van Dalen JW, Abdulrahman H, et al. Antihypertensive medication classes and the risk of dementia: a systematic review and network meta-analysis. J Am Med Dir Assoc. 2021; 22(7): 1386–1395.e15.
  47. Adesuyan M, Jani YH, Alsugeir D, et al. Antihypertensive agents and incident Alzheimer's disease: a systematic review and meta-analysis of observational studies. J Prev Alzheimers Dis. 2022; 9(4): 715–724.
  48. Levi Marpillat N, Macquin-Mavier I, Tropeano AI, et al. Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens. 2013; 31(6): 1073–1082.
  49. van Middelaar T, van Vught LA, Moll van Charante EP, et al. Lower dementia risk with different classes of antihypertensive medication in older patients. J Hypertens. 2017; 35(10): 2095–2101.
  50. van Dalen JW, Marcum ZA, Gray SL, et al. Association of angiotensin II-stimulating antihypertensive use and dementia risk: post hoc analysis of the PreDIVA Trial. Neurology. 2021; 96(1): e67–e80.
  51. Rouch L, Cestac P, Hanon O, et al. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs. 2015; 29(2): 113–130.
  52. Schroevers JL, Eggink E, Hoevenaar-Blom MP, et al. Antihypertensive medication classes and the risk of dementia over a decade of follow-up. J Hypertens. 2023; 41(2): 262–270.
  53. Feldman L, Vinker S, Efrati S, et al. Amlodipine treatment of hypertension associates with a decreased dementia risk. Clin Exp Hypertens. 2016; 38(6): 545–549.
  54. Calhoun DA, Lacourcière Y, Chiang YT, et al. Triple antihypertensive therapy with amlodipine, valsartan, and hydrochlorothiazide: a randomized clinical trial. Hypertension. 2009; 54(1): 32–39.
  55. Assaad-Khalil SH, Najem R, Sison J, et al. Real-world effectiveness of amlodipine/valsartan and amlodipine/valsartan/hydrochlorothiazide in high-risk patients and other subgroups. Vasc Health Risk Manag. 2015; 11: 71–78.
  56. Hu D, Liu L, Li W. Efficacy and safety of valsartan/amlodipine single-pill combination in 11,422 Chinese patients with hypertension: an observational study. Adv Ther. 2014; 31(7): 762–775.
  57. Boutouyrie P, Achouba A, Trunet P, et al. EXPLOR Trialist Group. Amlodipine-valsartan combination decreases central systolic blood pressure more effectively than the amlodipine-atenolol combination: the EXPLOR study. Hypertension. 2010; 55(6): 1314–1322.
  58. Sison J, Vega RM, Dayi Hu, et al. Efficacy and effectiveness of valsartan/amlodipine and valsartan/amlodipine/hydrochlorothiazide in hypertension: randomized controlled versus observational studies. Curr Med Res Opin. 2018; 34(3): 501–515.
  59. Eckert S, Freytag SB, Müller A, et al. Meta-analysis of three observational studies of amlodipine/valsartan in hypertensive patients with additional risk factors. Blood Press. 2013; 22(Suppl 1): 11–21.
  60. Yin G, Li Y, Xu W, et al. Chart review of patients receiving valsartan-amlodipine single-pill combination versus valsartan and amlodipine combination for blood pressure goal achievement and effects on the Hamilton anxiety rating/Hamilton depression rating scales. Medicine (Baltimore). 2019; 98(51): e18471.
  61. Shi R, Chen X. Impacts of amlodipine, valsartan and two drugs combination on blood pressure variability and pulse wave velocity. J Hypertens. 2015; 33: 161.
  62. Xu SK, Huang QF, Zeng WF, et al. A randomized multicenter study on ambulatory blood pressure and arterial stiffness in patients treated with valsartan/amlodipine or nifedipine GITS. J Clin Hypertens (Greenwich). 2019; 21(2): 252–261.
  63. Xu SK, Zeng WF, Li Y, et al. Effects of the valsartan/amlodipine combination and nifedipine gastrointestinal therapeutic system monotherapy on brachial pulse pressure and radial augmentation index in hypertensive patients. Blood Press Monit. 2021; 26(4): 251–256.
  64. Sultan EZM, Rabea H, Elberry AA, et al. Effect of amlodipine/nebivolol combination therapy on central BP and PWV compared to Amlodipine/Valsartan combination therapy. Egypt Heart J. 2022; 74(1): 15.
  65. Chen X, Huang Bo, Liu M, et al. Effects of different types of antihypertensive agents on arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Thorac Dis. 2015; 7(12): 2339–2347.
  66. Webb AJ, Rothwell PM. Effect of dose and combination of antihypertensives on interindividual blood pressure variability: a systematic review. Stroke. 2011; 42(10): 2860–2865.
  67. Levi-Marpillat N, Macquin-Mavier I, Tropeano AI, et al. Antihypertensive drug classes have different effects on short-term blood pressure variability in essential hypertension. Hypertens Res. 2014; 37(6): 585–590.
  68. Zhang Yi, Agnoletti D, Safar ME, et al. Effect of antihypertensive agents on blood pressure variability: the Natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension. 2011; 58(2): 155–160.
  69. Taha N, Shehata S, Abu-Zied M. P1651Combination of valsartan/amlodipine is more effective than bisoprolol/hydrochlorothiazide on reduction of blood pressure variability in patients with moderate or severe hypertension after control. Eur Heart J. 2017; 38(Suppl_1).
  70. Biaggioni I. Orthostatic hypotension in the hypertensive patient. Am J Hypertens. 2018; 31(12): 1255–1259.
  71. Rivasi G, Rafanelli M, Mossello E, et al. Drug-related orthostatic hypotension: beyond anti-hypertensive medications. Drugs Aging. 2020; 37(10): 725–738.
  72. Allemann Y, Fraile B, Lambert M, et al. Efficacy of the combination of amlodipine and valsartan in patients with hypertension uncontrolled with previous monotherapy: the Exforge in Failure after Single Therapy (EX-FAST) study. J Clin Hypertens (Greenwich). 2008; 10(3): 185–194.
  73. Smith TR, Philipp T, Vaisse B, et al. Amlodipine and valsartan combined and as monotherapy in stage 2, elderly, and black hypertensive patients: subgroup analyses of 2 randomized, placebo-controlled studies. J Clin Hypertens (Greenwich). 2007; 9(5): 355–364.
  74. Bhanu C, Nimmons D, Petersen I, et al. Drug-induced orthostatic hypotension: a systematic review and meta-analysis of randomised controlled trials. PLoS Med. 2021; 18(11): e1003821.
  75. Ma J, Wang XY, Hu ZD, et al. Meta-analysis of the efficacy and safety of adding an angiotensin receptor blocker (ARB) to a calcium channel blocker (CCB) following ineffective CCB monotherapy. J Thorac Dis. 2015; 7(12): 2243–2252.
  76. Di Stefano C, Milazzo V, Totaro S, et al. Orthostatic hypotension in a cohort of hypertensive patients referring to a hypertension clinic. J Hum Hypertens. 2015; 29(10): 599–603.
  77. Juraschek SP, Simpson LM, Davis BR, et al. Effects of antihypertensive class on falls, syncope, and orthostatic hypotension in older wdults: the ALLHAT trial. Hypertension. 2019; 74(4): 1033–1040.
  78. Mukete BN, Cassidy M, Ferdinand KC, et al. Long-term anti-hypertensive therapy and stroke prevention: a meta-analysis. Am J Cardiovasc Drugs. 2015; 15(4): 243–257.
  79. Wang JG, Li Y, Franklin SS, et al. Prevention of stroke and myocardial infarction by amlodipine and angiotensin receptor blockers: a quantitative overview. Hypertension. 2007; 50(1): 181–188.
  80. Wanas Y, Bashir R, Islam N, et al. Assessing the risk of angiotensin receptor blockers on major cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2020; 20(1): 188.
  81. Savarese G, Costanzo P, Cleland JG, et al. A meta-analysis reporting effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in patients without heart failure. J Am Coll Cardiol. 2013; 61(2): 131–142.
  82. Alosaimi M, Roos N, Alnakhli A, et al. Angiotensin-converting enzyme inhibitors nad angiotensin receptor blockers in stroke prevention: a systematic review and meta-analysis involving 297,451 patients. Journal of Hypertension. 2021; 39(Suppl 1): e184.
  83. McMurray J, Solomon S, Pieper K, et al. The effect of valsartan, captopril, or both on atherosclerotic events after acute myocardial infarction: an analysis of the Valsartan in Acute Myocardial Infarction Trial (VALIANT). J Am Coll Cardiol. 2006; 47(4): 726–733.
  84. Zhong XL, Dong Yi, Xu W, et al. Role of blood pressure management in stroke prevention: a systematic review and network meta-analysis of 93 Randomized Controlled Trials. J Stroke. 2021; 23(1): 1–11.
  85. Lee HJ, Jang SI, Park EC. Effect of adherence to antihypertensive medication on stroke incidence in patients with hypertension: a population-based retrospective cohort study. BMJ Open. 2017; 7(6): e014486.
  86. Chang TE, Ritchey MD, Park S, et al. National rates of nonadherence to antihypertensive medications among insured adults with hypertension, 2015. Hypertension. 2019; 74(6): 1324–1332.
  87. Tsioufis K, Kreutz R, Sykara G, et al. Impact of single-pill combination therapy on adherence, blood pressure control, and clinical outcomes: a rapid evidence assessment of recent literature. J Hypertens. 2020; 38(6): 1016–1028.
  88. Marcum ZA, Walker RL, Jones BL, et al. Patterns of antihypertensive and statin adherence prior to dementia: findings from the adult changes in thought study. BMC Geriatr. 2019; 19(1): 41.
  89. Surma S. Od klasyki do nowoczesności. Teoria kontinuum sercowo-naczyniowego a rozwój farmakoterapii. Choroby Serca i Naczyń. 2022; 18(4): 200–218.