Tom 18, Nr 2 (2021)
Artykuł przeglądowy
Opublikowany online: 2021-09-02
Wyświetlenia strony 3251
Wyświetlenia/pobrania artykułu 40
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Naturalne inhibitory PCSK9 — przegląd substancji o możliwym wpływie na PCSK9

Stanisław Surma12, Krzysztof J. Filipiak3
Choroby Serca i Naczyń 2021;18(2):60-76.

Streszczenie

Proproteinowa konwertaza subtilizyny/kexiny typu 9 (PCSK9) jest białkiem odkrytym w 2003 roku i pełniącym istotną rolę w metabolizmie lipoprotein. Główną funkcją PCSK9 jest regulacja liczby receptorów dla lipoprotein o niskiej gęstości (LDL) na powierzchni hepatocytów. Efektem biologicznym PSCK9 jest zmniejszenie liczby receptorów LDL na powierzchni hepatocytów, co ogranicza ich zdolność do wychwytywania lipoprotein LDL. Inhibitory PCSK9, takie jak alirokumab, ewolokumab czy inklisiran, stanowią nową, bardzo skuteczną metodę terapii hipolipemizującej. W ostatnim czasie zidentyfikowano szereg związków pochodzenia naturalnego, które charakteryzują się zdolnością do zmniejszania aktywności PCSK9. Związki te należą do alkaloidów, polifenoli, steroli, stanoli, białek występujących w warzywach oraz innych składników odżywczych i mogą znaleźć zastosowanie we wspomaganiu farmakoterapii zaburzeń lipidowych.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci USA. 2005; 102(6): 2069–2074.
  2. Momtazi AA, Banach M, Pirro M, et al. Regulation of PCSK9 by nutraceuticals. Pharmacol Res. 2017; 120: 157–169.
  3. Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA. 2003; 100(3): 928–933.
  4. Tavori H, Christian D, Minnier J, et al. PCSK9 association with lipoprotein(a). Circ Res. 2016; 119(1): 29–35.
  5. Ruscica M, Simonelli S, Botta M, et al. Plasma PCSK9 levels and lipoprotein distribution are preserved in carriers of genetic HDL disorders. Biochim Biophys Acta Mol Cell Biol Lipids. 2018; 1863(9): 991–997.
  6. Macchi C, Banach M, Corsini A, et al. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels — experimental and clinical approaches with lipid-lowering agents. Eur J Prev Cardiol. 2019; 26(9): 930–949.
  7. Awan Z, Baass A, Genest J. Proprotein convertase subtilisin/kexin type 9 (PCSK9): lessons learned from patients with hypercholesterolemia. Clin Chem. 2014; 60(11): 1380–1389.
  8. Poirier S, Mayer G, Poupon V, et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J Biol Chem. 2009; 284(42): 28856–28864.
  9. Qian YW, Schmidt RJ, Zhang Y, et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res. 2007; 48(7): 1488–1498.
  10. Adorni MP, Zimetti F, Lupo M, et al. Naturally occurring PCSK9 inhibitors. Nutrients. 2020; 12(5): 1440.
  11. Goldstein JL, Brown MS, Anderson RG, et al. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985; 1: 1–39.
  12. Horton JD, Shah NA, Warrington JA, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA. 2003; 100(21): 12027–12032.
  13. Nozue T. Lipid lowering therapy and circulating PCSK9 concentration. J Atheroscler Thromb. 2017; 24(9): 895–907.
  14. Schulz R, Schlüter KD, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol. 2015; 110(2): 4.
  15. Li H, Dong B, Park SW, et al. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem. 2009; 284(42): 28885–28895.
  16. Dong H, Wang N, Zhao Li, et al. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evid Based Complement Alternat Med. 2012; 2012: 591654.
  17. Lan J, Zhao Y, Dong F, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J Ethnopharmacol. 2015; 161: 69–81.
  18. Wang L, Ye X, Hua Y, et al. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed Pharmacother. 2018; 105: 121–129.
  19. Andola HC, Gaira KS, Rawal RS, et al. Habitat-dependent variations in berberine content of Berberis asiatica Roxb. ex. DC. in Kumaon, Western Himalaya. Chem Biodivers. 2010; 7(2): 415–420.
  20. Cameron J, Ranheim T, Kulseth MA, et al. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis. 2008; 201(2): 266–273.
  21. Xiao HB, Sun ZL, Zhang HB, et al. Berberine inhibits dyslipidemia in C57BL/6 mice with lipopolysaccharide induced inflammation. Pharmacol Rep. 2012; 64(4): 889–895.
  22. Liu Dl, Xu Lj, Dong H, et al. Inhibition of proprotein convertase subtilisin/kexin type 9: a novel mechanism of berberine and 8-hydroxy dihydroberberine against hyperlipidemia. Chin J Integr Med. 2015; 21(2): 132–138.
  23. Adorni MP, Ferri N, Marchianò S, et al. Effect of a novel nutraceutical combination on serum lipoprotein functional profile and circulating PCSK9. Ther Clin Risk Manag. 2017; 13: 1555–1562.
  24. Spigoni V, Aldigeri R, Antonini M, et al. Effects of a new nutraceutical formulation (berberine, red yeast rice and chitosan) on non-HDL cholesterol levels in individuals with dyslipidemia: results from a randomized, double blind, placebo-controlled study. Int J Mol Sci. 2017; 18: 1498.
  25. Formisano E, Pasta A, Cremonini AL, et al. Efficacy of Nutraceutical Combination of Monacolin K, Berberine, and Silymarin on Lipid Profile and PCSK9 Plasma Level in a Cohort of Hypercholesterolemic Patients. J Med Food. 2020; 23(6): 658–666.
  26. Pisciotta L, Bellocchio A, Bertolini S. Nutraceutical pill containing berberine versus ezetimibe on plasma lipid pattern in hypercholesterolemic subjects and its additive effect in patients with familial hypercholesterolemia on stable cholesterol-lowering treatment. Lipids Health Dis. 2012; 11: 123.
  27. Dong B, Li H, Singh AB, et al. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J Biol Chem. 2015; 290(7): 4047–4058.
  28. Dong H, Zhao Y, Zhao Li, et al. The effects of berberine on blood lipids: a systemic review and meta-analysis of randomized controlled trials. Planta Med. 2013; 79(6): 437–446.
  29. Guo Y, Chen Y, Tan ZR, et al. Repeated administration of berberine inhibits cytochromes P450 in humans. Eur J Clin Pharmacol. 2012; 68(2): 213–217.
  30. De Smet E, Mensink RP, Konings M, et al. Acute intake of plant stanol esters induces changes in lipid and lipoprotein metabolism-related gene expression in the liver and intestines of mice. Lipids. 2015; 50(6): 529–541.
  31. Simonen P, Stenman UH, Gylling H. Serum proprotein convertase subtilisin/kexin type 9 concentration is not increased by plant stanol ester consumption in normo- to moderately hypercholesterolaemic non-obese subjects. The BLOOD FLOW intervention study. Clin Sci (Lond). 2015; 129(5): 439–446.
  32. Lammi C, Zanoni C, Scigliuolo GM, et al. Lupin peptides lower low-density lipoprotein (LDL) cholesterol through an up-regulation of the LDL receptor/sterol regulatory element binding protein 2 (SREBP2) pathway at HepG2 cell line. J Agric Food Chem. 2014; 62(29): 7151–7159.
  33. Sirtori CR, Lovati MR, Manzoni C, et al. Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. J Nutr. 2004; 134(1): 18–23.
  34. Lammi C, Zanoni C, Calabresi L, et al. Lupin protein exerts cholesterol-lowering effects targeting PCSK9: from clinical evidences to elucidation of the in vitro molecular mechanism using HepG2 cells. Journal of Functional Foods. 2016; 23: 230–240.
  35. Pavanello C, Lammi C, Ruscica M, et al. Effects of a lupin protein concentrate on lipids, blood pressure and insulin resistance in moderately dyslipidaemic patients: A randomised controlled trial. Journal of Functional Foods. 2017; 37: 8–15.
  36. Lammi C, Zanoni C, Aiello G, et al. Lupin peptides modulate the protein-protein interaction of PCSK9 with the low density lipoprotein receptor in HepG2 cells. Sci Rep. 2016; 6: 29931.
  37. Ruscica M, Pavanello C, Gandini S, et al. Effect of soy on metabolic syndrome and cardiovascular risk factors: a randomized controlled trial. Eur J Nutr. 2018; 57(2): 499–511.
  38. Durazzo A, Lucarini M, Souto EB, et al. Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother Res. 2019; 33(9): 2221–2243.
  39. Mbikay M, Sirois F, Simoes S, et al. Quercetin-3-glucoside increases low-density lipoprotein receptor (LDLR) expression, attenuates proprotein convertase subtilisin/kexin 9 (PCSK9) secretion, and stimulates LDL uptake by Huh7 human hepatocytes in culture. FEBS Open Bio. 2014; 4: 755–762.
  40. Li S, Cao H, Shen D, et al. Quercetin protects against ox‑LDL‑induced injury via regulation of ABCAl, LXR‑α and PCSK9 in RAW264.7 macrophages. Mol Med Rep. 2018; 18(1): 799–806.
  41. Adorni MP, Cipollari E, Favari E, et al. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis. 2017; 256: 1–6.
  42. Ricci C, Ruscica M, Camera M, et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep. 2018; 8(1): 2267.
  43. Jia Q, Cao H, Shen D, et al. Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. Int J Mol Med. 2019; 44(3): 893–902.
  44. Kitamura K, Okada Y, Okada K, et al. Epigallocatechin gallate induces an up-regulation of LDL receptor accompanied by a reduction of PCSK9 via the annexin A2-independent pathway in HepG2 cells. Mol Nutr Food Res. 2017; 61(8).
  45. Jing Yi, Hu T, Lin C, et al. Resveratrol downregulates PCSK9 expression and attenuates steatosis through estrogen receptor α-mediated pathway in L02 cells. Eur J Pharmacol. 2019; 855: 216–226.
  46. Li Li, Shen C, Huang YX, et al. A new strategy for rapidly screening natural inhibitors targeting the PCSK9/LDLR interaction in vitro. Molecules. 2018; 23(9).
  47. Wang Yu, Ye J, Li J, et al. Polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating proprotein convertase subtilisin/kexin type 9 (PCSK9). Cardiovasc Diabetol. 2016; 15: 19.
  48. Dong Z, Zhang W, Chen S, et al. Silibinin A decreases statin‑induced PCSK9 expression in human hepatoblastoma HepG2 cells. Mol Med Rep. 2019; 20(2): 1383–1392.
  49. Barzaghi N, Crema F, Gatti G, et al. Pharmacokinetic studies on IdB 1016, a silybin-phosphatidylcholine complex, in healthy human subjects. Eur J Drug Metab Pharmacokinet. 1990; 15(4): 333–338.
  50. Sui GG, Xiao HB, Lu XY, et al. Naringin activates AMPK resulting in altered expression of SREBPs, PCSK9, and LDLR to reduce body weight in obese C57BL/6J mice. J Agric Food Chem. 2018; 66(34): 8983–8990.
  51. Gao WY, Chen PY, Chen SF, et al. Pinostrobin inhibits proprotein convertase subtilisin/kexin-type 9 (PCSK9) gene expression through the modulation of FoxO3a protein in HepG2 cells. J Agric Food Chem. 2018; 66(24): 6083–6093.
  52. Zia S, Batool S, Shahid R. Could PCSK9 be a new therapeutic target of eugenol? In vitro and in silico evaluation of hypothesis. Med Hypotheses. 2020; 136: 109513.
  53. Jo HK, Kim GoW, Jeong KJu, et al. Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway. Biol Pharm Bull. 2014; 37(8): 1341–1351.
  54. Tai MH, Chen PK, Chen PY, et al. Curcumin enhances cell-surface LDLR level and promotes LDL uptake through downregulation of PCSK9 gene expression in HepG2 cells. Mol Nutr Food Res. 2014; 58(11): 2133–2145.
  55. Cai Yu, Lu Di, Zou Y, et al. Curcumin protects against intestinal origin endotoxemia in rat liiver cirrhosis by targeting PCSK9. J Food Sci. 2017; 82(3): 772–780.
  56. Choi HK, Hwang JT, Nam TG, et al. Welsh onion extract inhibits PCSK9 expression contributing to the maintenance of the LDLR level under lipid depletion conditions of HepG2 cells. Food Funct. 2017; 8(12): 4582–4591.
  57. Sung YY, Yoon T, Kim SJu, et al. Anti-obesity activity of Allium fistulosum L. extract by down-regulation of the expression of lipogenic genes in high-fat diet-induced obese mice. Mol Med Rep. 2011; 4(3): 431–435.
  58. Baer DJ, Novotny JA. Consumption of cashew nuts does not influence blood lipids or other markers of cardiovascular disease in humans: a randomized controlled trial. Am J Clin Nutr. 2019; 109(2): 269–275.
  59. Chan KW, Ismail M, Mohd Esa N, et al. Dietary supplementation of defatted kenaf (Hibiscus cannabinus L.) seed meal and its phenolics-saponins rich extract effectively attenuates diet-induced hypercholesterolemia in rats. Food Funct. 2018; 9(2): 925–936.
  60. van Ballegooijen AJ, Beulens JW. The role of vitamin K status in cardiovascular health: evidence from observational and clinical studies. Curr Nutr Rep. 2017; 6(3): 197–205.
  61. Lupo MG, Biancorosso N, Brilli E, et al. Cholesterol-lowering action of a novel nutraceutical combination in uremic rats: insights into the molecular mechanism in a hepatoma cell line. Nutrients. 2020; 12(2).
  62. Alvi SS, Ansari I, Khan I, et al. Potential role of lycopene in targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia. Free Radic Boil. 2017; 108: 394–403.
  63. Alvi SS, Ansari IA, Ahmad MK, et al. Lycopene amends LPS induced oxidative stress and hypertriglyceridemia via modulating PCSK-9 expression and Apo-CIII mediated lipoprotein lipase activity. Biomed Pharmacother. 2017; 96: 1082–1093.
  64. Chang CL, Deckelbaum RJ. Omega-3 fatty acids: mechanisms underlying 'protective effects' in atherosclerosis. Curr Opin Lipidol. 2013; 24(4): 345–350.
  65. Yuan F, Wang H, Tian Yu, et al. Fish oil alleviated high-fat diet-induced non-alcoholic fatty liver disease via regulating hepatic lipids metabolism and metaflammation: a transcriptomic study. Lipids Health Dis. 2016; 15: 20.
  66. Sorokin AV, Yang ZH, Vaisman BL, et al. Addition of aspirin to a fish oil-rich diet decreases inflammation and atherosclerosis in ApoE-null mice. J Nutr Biochem. 2016; 35: 58–65.
  67. Rodríguez-Pérez C, Ramprasath VR, Pu S, et al. Docosahexaenoic acid attenuates cardiovascular risk factors via a decline in proprotein convertase subtilisin/kexin type 9 (PCSK9) plasma levels. Lipids. 2016; 51(1): 75–83.
  68. Bjermo H, Iggman D, Kullberg J, et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr. 2012; 95(5): 1003–1012.
  69. Jump DB, Jump DB, Botolin D, et al. Polyunsaturated fatty acid regulation of hepatic gene transcription. Lipids. 1996; 31(Suppl): S7–S11.
  70. Graversen CB, Lundbye-Christensen S, Thomsen B, et al. Marine n-3 polyunsaturated fatty acids lower plasma proprotein convertase subtilisin kexin type 9 levels in pre- and postmenopausal women: A randomised study. Vascul Pharmacol. 2016; 76: 37–41.
  71. Kourimate S, Le May C, Langhi C, et al. Dual mechanisms for the fibrate-mediated repression of proprotein convertase subtilisin/kexin type 9. J Biol Chem. 2008; 283(15): 9666–9673.
  72. Lambert G, Jarnoux AL, Pineau T, et al. Fasting induces hyperlipidemia in mice overexpressing proprotein convertase subtilisin kexin type 9: lack of modulation of very-low-density lipoprotein hepatic output by the low-density lipoprotein receptor. Endocrinology. 2006; 147(10): 4985–4995.
  73. Mann GV. Studies of a surfactant and cholesteremia in the Maasai. Am J Clin Nutr. 1974; 27(5): 464–469.
  74. Ruscica M, Pavanello C, Gandini S, et al. aceutical approach for the management of cardiovascular risk — a combination containing the probiotic Bifidobacterium longum BB536 and red yeast rice extract: Results from a randomized, double-blind, placebo-controlled study. Nutr J. 2019; 18(1): 13.
  75. Qu L, Li D, Gao X, et al. Di'ao Xinxuekang Capsule, a Chinese medicinal product, decreases serum lipids levels in high-fat diet-fed ApoE-/- mice by downregulating PCSK9. Front Pharmacol. 2018; 9: 1170.
  76. Gai Y, Li Y, Xu Z, et al. Pseudoprotodioscin inhibits SREBPs and microRNA 33a/b levels and reduces the gene expression regarding the synthesis of cholesterol and triglycerides. Fitoterapia. 2019; 139: 104393.
  77. Li J, Ding L, Song B, et al. Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway. Eur J Pharmacol. 2016; 770: 99–109.
  78. Su ZL, Hang PZ, Hu J, et al. Aloe-emodin exerts cholesterol-lowering effects by inhibiting proprotein convertase subtilisin/kexin type 9 in hyperlipidemic rats. Acta Pharmacol Sin. 2020; 41(8): 1085–1092.
  79. Yang JiH, Bang MiAe, Jang CHo, et al. Alginate oligosaccharide enhances LDL uptake via regulation of LDLR and PCSK9 expression. J Nutr Biochem. 2015; 26(11): 1393–1400.