Tom 17, Nr 4 (2020)
Artykuł przeglądowy
Opublikowany online: 2021-02-28
Wyświetlenia strony 2393
Wyświetlenia/pobrania artykułu 44
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Wpływ warunków górskich na zmienność ciśnienia tętniczego i kontrolę nadciśnienia tętniczego

Stanisław Surma1, Krzysztof Narkiewicz2
Choroby Serca i Naczyń 2020;17(4):203-215.

Streszczenie

Duża część społeczeństwa uprawia turystykę wybierając często jako cel swojej podróży regiony górskie, w tym wysokogórskie. Wiele górskich szczytów może być celem jednodniowej wycieczki. Coraz popularniejsze stają się komercyjne wyprawy na ośmiotysięczniki, które kiedyś dostępne były jedynie dla profesjonalnych himalaistów. Wszystko to sprawia, że w trakcie krótkiego czasu można znaleźć się na znacznej wysokości nad poziomem morza. W trakcie przebywania na wysokości ponad 2500 m. n.p.m. dochodzi do zmniejszenia ciśnienia parcjalnego tlenu we wdychanym powietrzu, co prowadzi do niedotlenienia tkanek. W tych warunkach w organizmie ulegają pobudzeniu mechanizmy kompensacyjne dotyczące głównie regulacji ciśnienia tętniczego, częstości rytmu serca oraz częstości oddechów. Celem niniejszej pracy jest przedstawienie wpływu warunków górskich na ciśnienie tętnicze, a także rekomendacji klinicznych dla chorych z nadciśnieniem tętniczym, wybierających się w góry.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Silva FB, Herrera MM, Rosina K, et al. Analysing spatiotemporal patterns of tourism in Europe at high-resolution with conventional and big data sources. Tourism Management. 2018; 68: 101–115.
  2. Raport „Zagraniczne wakacje Polaków 2019”. Polska Izba Turystyki. http://www.pit.org.pl/media/1/002/009/2363.pdf (June 30, 2020).
  3. Ogólnopolskie badanie przeprowadzone w 2019 roku przez Opinia24 dla Magazynu Podróże. https://podroze.se.pl/aktualnosci/morze-czy-gory-wiemy-na-co-postawili-polacy-w-2019/6854/ (June 30, 2020).
  4. Sprzedaż biletów wstępu w roku 2019. https://tpn.pl/upload/filemanager/Beata/BBilety2019.pdf (June 30, 2020).
  5. Korzeniewski K. Problemy zdrowotne w warunkach wysokogórskich. Pol Merkuriusz Lek. 2008; 25(146): 161–165.
  6. Bilo G, Caravita S, Torlasco C, et al. Blood pressure at high altitude: physiology and clinical implications. Kardiol Pol. 2019; 77(6): 596–603.
  7. Imray C, Booth G, Wright A, et al. BMJ. Acute altitude illnesses. 2011; 343: d4943.
  8. U.S. Standard Atmosphere, 1976. https://ntrs.nasa.gov/api/citations/19770009539/downloads/19770009539.pdf (June 30, 2020).
  9. Rimoldi SF, Sartori C, Seiler C, et al. High-altitude exposure in patients with cardiovascular disease: risk assessment and practical recommendations. Prog Cardiovasc Dis. 2010; 52(6): 512–524.
  10. Parati G, Agostoni P, Basnyat B, et al. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions. Eur Heart J. 2018; 39(17): 1546–1554.
  11. Bärtsch P, Gibbs JS. Effect of altitude on the heart and the lungs. Circulation. 2007; 116(19): 2191–2202.
  12. Hurtado A. Animals in high altitudes: resident man. In: Dill DB. ed. andbook of physiology. Section 4. Adaptation to the environment. American Physiological Society, Washington, DC 1964: 843–860.
  13. Bilo G, Revera M, Bussotti M, et al. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics. PLoS One. 2012; 7(11): e49074.
  14. Parati G, Revera M, Giuliano A, et al. Effects of acetazolamide on central blood pressure, peripheral blood pressure, and arterial distensibility at acute high altitude exposure. Eur Heart J. 2013; 34(10): 759–766.
  15. Reeves JT, Groves BM, Sutton JR, et al. Operation Everest II: preservation of cardiac function at extreme altitude. J Appl Physiol (1985). 1987; 63(2): 531–539.
  16. Boussuges A, Molenat F, Burnet H, et al. Operation Everest III (Comex '97): modifications of cardiac function secondary to altitude-induced hypoxia. An echocardiographic and Doppler study. Am J Respir Crit Care Med. 2000; 161(1): 264–270.
  17. Agostoni P, Swenson ER, Fumagalli R, et al. Acute high-altitude exposure reduces lung diffusion: data from the HIGHCARE Alps project. Respir Physiol Neurobiol. 2013; 188(2): 223–228.
  18. Pratali L, Cavana M, Sicari R, et al. Frequent subclinical high-altitude pulmonary edema detected by chest sonography as ultrasound lung comets in recreational climbers. Crit Care Med. 2010; 38(9): 1818–1823.
  19. Hansen J, Sander M. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol. 2003; 546(Pt 3): 921–929.
  20. Sutton JR, Houston CS, Mansell AL, et al. Effect of acetazolamide on hypoxemia during sleep at high altitude. N Engl J Med. 1979; 301(24): 1329–1331.
  21. Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation. 2007; 115(9): 1132–1146.
  22. Moore LG, Niermeyer S, Zamudio S. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol. 1998; Suppl 27: 25–64, doi: 10.1002/(sici)1096-8644(1998)107:27+<25::aid-ajpa3>3.0.co;2-l.
  23. West JB, Readhead A. Working at high altitude: medical problems, misconceptions, and solutions. Observatory. 2004; 124: 1–14.
  24. Richalet JP, Donoso MV, Jiménez D, et al. Chilean miners commuting from sea level to 4500 m: a prospective study. High Alt Med Biol. 2002; 3(2): 159–166.
  25. Corante N, Anza-Ramírez C, Figueroa-Mujíca R, et al. Excessive erythrocytosis and cardiovascular risk in Andean highlanders. High Alt Med Biol. 2018; 19(3): 221–231.
  26. Ruiz L, Peñaloza D. Altitude and hypertension. Mayo Clin Proc. 1977; 52: 442–445.
  27. Narvaez-Guerra O, Herrera-Enriquez K, Medina-Lezama J, et al. Systemic hypertension at high altitude. Hypertension. 2018; 72(3): 567–578.
  28. Mingji C, Onakpoya IJ, Perera R, et al. Relationship between altitude and the prevalence of hypertension in Tibet: a systematic review. Heart. 2015; 101(13): 1054–1060.
  29. Aryal N, Weatherall M, Bhatta YK, et al. Blood Pressure and hypertension in adults permanently living at hiigh altitude: a systematic review and meta-analysis. High Alt Med Biol. 2016; 17(3): 185–193.
  30. Vogel JA, Harris CW. Cardiopulmonary responses of resting man during early exposure to high altitude. J Appl Physiol. 1967; 22(6): 1124–1128.
  31. Schobersberger W, Schmid P, Lechleitner M, et al. Austrian Moderate Altitude Study 2000 (AMAS 2000). The effects of moderate altitude (1,700 m) on cardiovascular and metabolic variables in patients with metabolic syndrome. Eur J Appl Physiol. 2003; 88(6): 506–514.
  32. Schwarz EI, Latshang TD, Furian M, et al. Blood pressure response to exposure to moderate altitude in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2019; 14: 659–666.
  33. Stöwhas AC, Latshang TD, Lo Cascio CM, et al. Effects of acute exposure to moderate altitude on vascular function, metabolism and systemic inflammation. PLoS One. 2013; 8(8): e70081.
  34. Wolfel EE, Selland MA, Mazzeo RS, et al. Systemic hypertension at 4,300 m is related to sympathoadrenal activity. J Appl Physiol (1985). 1994; 76(4): 1643–1650.
  35. Veglio M, Maule S, Cametti G, et al. The effects of exposure to moderate altitude on cardiovascular autonomic function in normal subjects. Clin Auton Res. 1999; 9(3): 123–127.
  36. Parati G, Bilo G, Faini A, et al. Changes in 24 h ambulatory blood pressure and effects of angiotensin II receptor blockade during acute and prolonged high-altitude exposure: a randomized clinical trial. Eur Heart J. 2014; 35(44): 3113–3122.
  37. Halliwill JR, Minson CT. Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans. J Appl Physiol (1985). 2002; 93(3): 857–864.
  38. Zaccaria M, Rocco S, Noventa D, et al. Sodium regulating hormones at high altitude: basal and post-exercise levels. J Clin Endocrinol Metab. 1998; 83(2): 570–574.
  39. Bruno RM, Ghiadoni L, Pratali L. Vascular adaptation to extreme conditions: the role of hypoxia. Artery Res. 2016; 14(C): 15.
  40. Yanamandra U, Singh SP, Yanamandra S, et al. Endothelial markers in high altitude induced systemic hypertension (HASH) at moderate high altitude. Med J Armed Forces India. 2017; 73(4): 363–369.
  41. Lewis NCS, Bailey DM, Dumanoir GR, et al. Conduit artery structure and function in lowlanders and native highlanders: relationships with oxidative stress and role of sympathoexcitation. J Physiol. 2014; 592(5): 1009–1024.
  42. Revera M, Salvi P, Faini A, et al. HIGHCARE Himalaya Investigators. Renin-angiotensin-aldosterone system is not involved in the arterial stiffening induced by acute and prolonged exposure to high altitude. Hypertension. 2017; 70(1): 75–84.
  43. Boos CJ, Vincent E, Mellor A, et al. The effect of high altitude on central blood pressure and arterial stiffness. J Hum Hypertens. 2017; 31(11): 715–719.
  44. Siqués P, Brito J, Banegas JR, et al. Blood pressure responses in young adults first exposed to high altitude for 12 months at 3550 m. High Alt Med Biol. 2009; 10(4): 329–335.
  45. Insalaco G, Romano S, Salvaggio A, et al. Blood pressure and heart rate during periodic breathing while asleep at high altitude. J Appl Physiol (1985). 2000; 89(3): 947–955.
  46. Naeije R. Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis. 2010; 52(6): 456–466.
  47. Caravita S, Faini A, Baratto C, et al. Upward shift and steepening of the blood pressure response to exercise in hypertensive subjects at high altitude. J Am Heart Assoc. 2018; 7(12).
  48. Caravita S, Faini A, Bilo G, et al. Ischemic changes in exercise ECG in a hypertensive subject acutely exposed to high altitude. Possible role of a high-altitude induced imbalance in myocardial oxygen supply-demand. Int J Cardiol. 2014; 171(3): e100–e102.
  49. Schmid JP, Noveanu M, Gaillet R, et al. Safety and exer-cise tolerance of acute high altitude exposure (3454 m) among patients with coro¬nary artery disease. Heart. 2006; 92: 921–925.
  50. Levine BD, Zuckerman JH, deFilippi CR. Effect of high-altitude exposure in the elderly: the Tenth Mountain Division study. Circulation. 1997; 96(4): 1224–1232.
  51. Roach RC, Houston CS, Honigman B, et al. How well do older persons tolerate moderate altitude? West J Med. 1995; 162(1): 32–36.
  52. Windecker S, Kolh P, Alfonso F, et al. Authors/Task Force members. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014; 35(37): 2541–2619.
  53. Somers VK, Mark AL, Abboud FM. Potentiation of sympathetic nerve responses to hypoxia in borderline hypertensive subjects. Hypertension. 1988; 11(6 Pt 2): 608–612.
  54. Richalet JP, Dechaux M, Bienvenu A, et al. Erythropoiesis and renal function at the altitude of 6,542 m. Jnp J Mount Med. 1995; 15: 135–50.
  55. Krapf R, Jaeger P, Hulter HN. Chronic respiratory alkalosis induces renal PTH-resistance, hyperphosphatemia and hypocalcemia in humans. Kidney Int. 1992; 42(3): 727–734.
  56. Wu TY, Ding SQ, Liu JL, et al. Who should not go high: chronic disease and work at altitude during construction of the Qinghai-Tibet railroad. High Alt Med Biol. 2007; 8(2): 88–107.
  57. Bilo G, Villafuerte FC, Faini A, et al. Ambulatory blood pressure in untreated and treated hypertensive patients at high altitude: the High Altitude Cardiovascular Research-Andes study. Hypertension. 2015; 65(6): 1266–1272.
  58. Caravita S, Faini A, Bilo G, et al. Blood pressure response to exercise in hypertensive subjects exposed to high altitude and treatment effects. J Am Coll Cardiol. 2015; 66(24): 2806–2807.
  59. Bilo G, Caldara G, Styczkiewicz K, et al. Effects of selective and nonselective beta-blockade on 24-h ambulatory blood pressure under hypobaric hypoxia at altitude. J Hypertens. 2011; 29(2): 380–387.
  60. Parati G, Revera M, Giuliano A, et al. Effects of acetazolamide on central blood pressure, peripheral blood pressure, and arterial distensibility at acute high altitude exposure. Eur Heart J. 2013; 34(10): 759–766.