Tom 16, Nr 4 (2019)
Nadciśnienie płucne
Opublikowany online: 2019-10-20

dostęp otwarty

Wyświetlenia strony 534
Wyświetlenia/pobrania artykułu 1096
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Nadciśnienie płucne w przebiegu chorób lewego serca

Ilona Skoczylas1, Jolanta Nowak1, Jacek Niedziela1, Lech Poloński1
Choroby Serca i Naczyń 2019;16(4):222-228.

Streszczenie

Nadciśnienie płucne (PH) jest częste u chorych z niewydolnością serca, a ryzyko jego wystąpienia zwiększa się z postępem choroby. Nadciśnienie płucne w przebiegu chorób lewego serca (PH-LHD) stanowi 65–80% wszystkich przypadków PH. U chorych z niewydolnością serca z obniżoną frakcją wyrzutową częstość występowania PH określa się na 40–75%, natomiast u chorych z zachowaną frakcją wyrzutową — na 36–83%. Nadciśnienie płucne w chorobach lewego serca jest zwykle dowodem dużego zaawansowania choroby podstawowej i czynnikiem niekorzystnym prognostycznie. W niniejszym artykule podsumowano ewolucję kryteriów diagnostycznych i klasyfikacji PH-LHD, kończąc na najbardziej aktualnych danych zaprezentowanych w czasie 6. Światowego Kongresu Nadciśnienia Płucnego w Nicei w 2018 roku.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Wood P. Pulmonary hypertension with special reference to the vasoconstrictive factor. Br Heart J. 1958; 20(4): 557–570.
  2. Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013; 62(25 Suppl): D34–D41.
  3. Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Kardiol Pol. 2015: 1127–1206.
  4. Butler J, Chomsky DB, Wilson JR. Pulmonary hypertension and exercise intolerance in patients with heart failure. J Am Coll Cardiol. 1999; 34(6): 1802–1806.
  5. Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 2013; 1(4): 290–299.
  6. Lam CSP, Roger VL, Rodeheffer RJ, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009; 53(13): 1119–1126.
  7. Leung CC, Moondra V, Catherwood E, et al. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol. 2010; 106(2): 284–286.
  8. Shah AM, Shah SJ, Anand IS, et al. TOPCAT Investigators. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Circ Heart Fail. 2014; 7(1): 104–115.
  9. Vachiéry JL, Adir Y, Barberà JA, et al. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2013; 62(25 Suppl): D100–D108.
  10. Naeije R, Vachiery JL, Yerly P, et al. The transpulmonary pressure gradient for the diagnosis of pulmonary vascular disease. Eur Respir J. 2013; 41(1): 217–223.
  11. Maron BA, Hess E, Maddox TM, et al. Association of Borderline Pulmonary Hypertension With Mortality and Hospitalization in a Large Patient Cohort: Insights From the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. Circulation. 2016; 133(13): 1240–1248.
  12. Aronson D, Darawsha W, Atamna A, et al. Pulmonary hypertension, right ventricular function, and clinical outcome in acute decompensated heart failure. J Card Fail. 2013; 19(10): 665–671.
  13. Schwartzenberg S, Redfield MM, From AM, et al. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol. 2012; 59(5): 442–451.
  14. Gerges C, Gerges M, Lang MB, et al. Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in. Chest. 2013; 143(3): 758–766.
  15. Tampakakis E, Leary PJ, Selby VN, et al. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail. 2015; 3(1): 9–16.
  16. Opitz CF, Hoeper MM, Gibbs JS, et al. Pre-Capillary, Combined, and Post-Capillary Pulmonary Hypertension: A Pathophysiological Continuum. J Am Coll Cardiol. 2016; 68(4): 368–378.
  17. Magne J, Lancellotti P, O'Connor K, et al. Exercise pulmonary hypertension in asymptomatic degenerative mitral regurgitation. Circulation. 2010; 122(1): 33–41.
  18. Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012; 126(8): 975–990.
  19. Moraes DL, Colucci WS, Givertz MM. Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation. 2000; 102(14): 1718–1723.
  20. Harvey RM, Enson Y, Ferrer MI. A reconsideration of the origins of pulmonary hypertension. Chest. 1971; 59(1): 82–94.
  21. Glower DD, Kar S, Trento A, et al. Percutaneous mitral valve repair for mitral regurgitation in high-risk patients: results of the EVEREST II study. J Am Coll Cardiol. 2014; 64(2): 172–181.
  22. Rogers JH, Thomas M, Morice MC, et al. Treatment of Heart Failure With Associated Functional Mitral Regurgitation Using the ARTO System: Initial Results of the First-in-Human MAVERIC Trial (Mitral Valve Repair Clinical Trial). JACC Cardiovasc Interv. 2015; 8(8): 1095–1104.
  23. Zimpfer D, Zrunek P, Roethy W, et al. Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J Thorac Cardiovasc Surg. 2007; 133(3): 689–695.
  24. Costanzo MR, Stevenson LW, Adamson PB, et al. Interventions Linked to Decreased Heart Failure Hospitalizations During Ambulatory Pulmonary Artery Pressure Monitoring. JACC Heart Fail. 2016; 4(5): 333–344.
  25. Califf RM, Adams KF, McKenna WJ, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997; 134(1): 44–54.
  26. Kalra PR, Moon JCC, Coats AJS. Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure? Int J Cardiol. 2002; 85(2-3): 195–197.
  27. Packer M, McMurray J, Massie BM, et al. Clinical effects of endothelin receptor antagonism with bosentan in patients with severe chronic heart failure: results of a pilot study. J Card Fail. 2005; 11(1): 12–20.
  28. Anand I, McMurray J, Cohn JN, et al. EARTH investigators. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet. 2004; 364(9431): 347–354.
  29. Lüscher TF, Enseleit F, Pacher R, et al. Heart Failure ET(A) Receptor Blockade Trial. Hemodynamic and neurohumoral effects of selective endothelin A (ET(A)) receptor blockade in chronic heart failure: the Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation. 2002; 106(21): 2666–2672.
  30. Vachiéry JL, Delcroix M, Al-Hiti H, et al. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J. 2018; 51(2).
  31. Wu X, Yang Te, Zhou Qi, et al. Additional use of a phosphodiesterase 5 inhibitor in patients with pulmonary hypertension secondary to chronic systolic heart failure: a meta-analysis. Eur J Heart Fail. 2014; 16(4): 444–453.
  32. Redfield MM, Chen HH, Borlaug BA, et al. RELAX Trial. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013; 309(12): 1268–1277.
  33. Hoendermis ES, Liu LCY, Hummel YM, et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J. 2015; 36(38): 2565–2573.
  34. Bonderman D, Pretsch I, Steringer-Mascherbauer R, et al. Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest. 2014; 146(5): 1274–1285.
  35. Bonderman D, Ghio S, Felix SB, et al. Left Ventricular Systolic Dysfunction Associated With Pulmonary Hypertension Riociguat Trial (LEPHT) Study Group. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013; 128(5): 502–511.
  36. Pieske B, Maggioni AP, Lam CSP, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017; 38(15): 1119–1127.
  37. Gheorghiade M, Greene SJ, Butler J, et al. SOCRATES-REDUCED Investigators and Coordinators. Effect of Vericiguat, a Soluble Guanylate Cyclase Stimulator, on Natriuretic Peptide Levels in Patients With Worsening Chronic Heart Failure and Reduced Ejection Fraction: The SOCRATES-REDUCED Randomized Trial. JAMA. 2015; 314(21): 2251–2262.
  38. Bermejo J, Yotti R, García-Orta R, et al. Sildenafil for Improving Outcomes after VAlvular Correction (SIOVAC) investigators. Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial. Eur Heart J. 2018; 39(15): 1255–1264.