Tom 16, Nr 3 (2019)
Z pogranicza kardiologii
Opublikowany online: 2019-09-24

dostęp otwarty

Wyświetlenia strony 1481
Wyświetlenia/pobrania artykułu 2783
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Wpływ smogu (zanieczyszczonego powietrza) na choroby układu sercowo-naczyniowego

Jerzy Głuszek1, Teresa Maria Kosicka2
Choroby Serca i Naczyń 2019;16(3):201-206.

Streszczenie

Od kilkudziesięciu lat wiadomo, że smog (zanieczyszczenie powietrza) istotnie zwiększa śmiertelność osób narażonych na jego wdychanie. Natomiast stosunkowo niedawno wykazano, że śmiertelność ta wiąże się nie tylko z chorobami układu oddechowego, lecz także w dużej mierze ze schorzeniami układu sercowo-naczyniowego. Zanieczyszczenie powietrza jest wywołane pyłami o wielkości od 0,1 do 10 μm oraz gazami, takimi jak tlenek węgla, dwutlenek siarki i azotu oraz ozon. Dowiedziono, że wzrost stężenia pyłów (zwłaszcza PM2,5) jest odpowiedzialny za zwiększone ryzyko niedokrwiennej choroby serca oraz (razem z powyższymi gazami) za niewydolność serca. Zanieczyszczenie powietrza może także zwiększać insulinooporność i częstość zachorowania na cukrzycę typu 2. Podejrzewa się, że nasilenie stanu zapalnego i stresu oksydacyjnego, a także wzrost ciśnienia tętniczego pojawiające się w wyniku zanieczyszczenia powietrza mogą odpowiadać za schorzenia układu sercowo-naczyniowego u osób narażonych na wdychanie tych zanieczyszczeń.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Brook RD, Newby DE, Rajagopalan S. The Global Threat of Outdoor Ambient Air Pollution to Cardiovascular Health: Time for Intervention. JAMA Cardiol. 2017; 2(4): 353–354.
  2. Mazurek H. Smog – zagrożenie dla zdrowia czy moda na ekologię? ITEM Publishing Sp z o.o. Sp.k., Warszawa 2018.
  3. LOGAN WPD. Mortality in the London fog incident, 1952. Lancet. 1953; 1(6755): 336–338.
  4. Stanek LW, Brown JS, Stanek J, et al. Air pollution toxicology--a brief review of the role of the science in shaping the current understanding of air pollution health risks. Toxicol Sci. 2011; 120 Suppl 1: S8–27.
  5. Samoli E, Peng R, Ramsay T, et al. Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA study. Environ Health Perspect. 2008; 116(11): 1480–1486.
  6. Nawrot TS, Perez L, Künzli N, et al. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet. 2011; 377(9767): 732–740.
  7. Sarnat JA, Schwartz J, Suh HH, et al. Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J Med. 2000; 343(24): 1742–1749.
  8. Shah ASV, Langrish JP, Nair H, et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet. 2013; 382(9897): 1039–1048.
  9. Newell K, Kartsonaki C, Lam KB, et al. Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Planet Health. 2017; 1(9): e368–e380.
  10. Xie W, Li G, Zhao D, et al. Relationship between fine particulate air pollution and ischaemic heart disease morbidity and mortality. Heart. 2015; 101(4): 257–263.
  11. Atkinson RW, Kang S, Anderson HR, et al. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax. 2014; 69(7): 660–665.
  12. Dockery DW, Pope CA, Xu X, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993; 329(24): 1753–1759.
  13. Pope CA, Burnett RT, Thun MJ, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002; 287(9): 1132–1141.
  14. Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014; 383(9919): 785–795.
  15. Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017; 389(10082): 1907–1918.
  16. Song C, He J, Wu L, et al. Health burden attributable to ambient PM in China. Environ Pollut. 2017; 223: 575–586.
  17. Puett RC, Hart JE, Yanosky JD, et al. Chronic particulate exposure, mortality, and coronary heart disease in the nurses' health study. Am J Epidemiol. 2008; 168(10): 1161–1168.
  18. Miller KA, Siscovick DS, Sheppard L, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007; 356(5): 447–458.
  19. Landrigan PJ, Fuller R, Acosta NJR, et al. The Lancet Commission on pollution and health. Lancet. 2018; 391(10119): 462–512.
  20. Pope CA, Burnett RT, Thurston GD, et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004; 109(1): 71–77.
  21. Atkinson RW, Carey IM, Kent AJ, et al. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology. 2013; 24(1): 44–53.
  22. Lambrechtsen J, Gerke O, Egstrup K, et al. The relation between coronary artery calcification in asymptomatic subjects and both traditional risk factors and living in the city centre: a DanRisk substudy. J Intern Med. 2012; 271(5): 444–450.
  23. Madrigano J, Kloog I, Goldberg R, et al. Long-term exposure to PM2.5 and incidence of acute myocardial infarction. Environ Health Perspect. 2013; 121(2): 192–196.
  24. Wellenius GA, Burger MR, Coull BA, et al. Ambient air pollution and the risk of acute ischemic stroke. Arch Intern Med. 2012; 172(3): 229–234.
  25. Adar SD, Sheppard L, Vedal S, et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 2013; 10(4): e1001430.
  26. Dockery D, Luttmann-Gibson H, Rich D, et al. Association of Air Pollution with Increased Incidence of Ventricular Tachyarrhythmias Recorded by Implanted Cardioverter Defibrillators. Environmental Health Perspectives. 2005; 113(6): 670–674.
  27. He F, Shaffer ML, Rodriguez-Colon S, et al. Acute effects of fine particulate air pollution on cardiac arrhythmia: the APACR study. Environ Health Perspect. 2011; 119(7): 927–932.
  28. Kim IS, Yang PS, Lee J, et al. Long-term exposure of fine particulate matter air pollution and incydent atrial fibrillation in the general population: A natiowide cohort study. Int J Cardiol. 2018.
  29. Brook RD, Xu X, Bard RL, et al. Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution. Sci Total Environ. 2013; 448: 66–71.
  30. Thiering E, Cyrys J, Kratzsch J, et al. Long-term exposure to traffic-related air pollution and insulin resistance in children: results from the GINIplus and LISAplus birth cohorts. Diabetologia. 2013; 56(8): 1696–1704.
  31. Pearson JF, Bachireddy C, Shyamprasad S, et al. Association between fine particulate matter and diabetes prevalence in the U.S. Diabetes Care. 2010; 33(10): 2196–2201.
  32. Weinmayr G, Hennig F, Fuks K, et al. Heinz Nixdorf Recall Investigator Group. Long-term exposure to fine particulate matter and incidence of type 2 diabetes mellitus in a cohort study: effects of total and traffic-specific air pollution. Environ Health. 2015; 14: 53.
  33. Brook RD, Xu X, Bard RL, et al. Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution. Sci Total Environ. 2013; 448: 66–71.
  34. Jacobs L, Emmerechts J, Hoylaerts MF, et al. Traffic air pollution and oxidized LDL. PLoS One. 2011; 6(1): e16200.
  35. Li R, Kou X, Geng H, et al. Effect of ambient PM(2.5) on lung mitochondrial damage and fusion/fission gene expression in rats. Chem Res Toxicol. 2015; 28(3): 408–418.
  36. Jin X, Xue B, Zhou Q, et al. Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM exposure. J Toxicol Sci. 2018; 43(2): 101–111.
  37. Soukup JM, Becker S. Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxin. Toxicol Appl Pharmacol. 2001; 171(1): 20–26.
  38. Kerr R, Stirling D, Ludlam CA. Interleukin 6 and haemostasis. Br J Haematol. 2001; 115(1): 3–12.
  39. Wassmann S, Stumpf M, Strehlow K, et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res. 2004; 94(4): 534–541.
  40. Zanobetti A, Luttmann-Gibson H, Horton ES, et al. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study. Environ Health Perspect. 2014; 122(3): 242–248.
  41. Cong X, Xu X, Xu L, et al. Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children. Environ Int. 2018; 115: 117–126.
  42. Barbosa CM, Terra-Filho M, Albuquerque AL, et al. Burnt Sugarcane Harvesting – Cardiovascular Effects on a Group of Healthy Workers, Brazil. PLoS One. 2012; 7(9): e46142.
  43. Coogan PF, White LF, Jerrett M, et al. Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation. 2012; 125(6): 767–772.
  44. Chen H, Burnett RT, Kwong JC, et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation. 2014; 129(5): 562–569.
  45. Mendez R, Zheng Ze, Fan Z, et al. Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue. Am J Transl Res. 2013; 5(2): 224–234.
  46. Li W, Dorans KS, Wilker EH, et al. Residential proximity to major roadways, fine particulate matter, and adiposity: The framingham heart study. Obesity (Silver Spring). 2016; 24(12): 2593–2599.
  47. Liu C, Bai Y, Xu X, et al. Exaggerated effects of particulate matter air pollution in genetic type II diabetes mellitus. Part Fibre Toxicol. 2014; 11: 27.
  48. Sun Q, Yue P, Deiuliis JA, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation. 2009; 119(4): 538–546.
  49. Semmler-Behnke M, Takenaka S, Fertsch S, et al. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect. 2007; 115(5): 728–733.