dostęp otwarty

Tom 15, Nr 3 (2018)
Nefrokardiologia
Pobierz cytowanie

Wpływ czynników wzrostu fibroblastów na układ sercowo-naczyniowy

Zbigniew Heleniak, Marek Karowiec, Alicja Dębska-Ślizień
Choroby Serca i Naczyń 2018;15(3):165-176.

dostęp otwarty

Tom 15, Nr 3 (2018)
Nefrokardiologia

Streszczenie

Czynniki wzrostu fibroblastów (FGF) są mediatorami sygnałowymi, które wpływają na proliferację i przeżycie komórek. Wykazano, że różne rodzaje FGF indukują przebudowę serca w warunkach fizjologicznych oraz promują angiogenezę, co prowadzi do poprawy jego funkcji. Ponadto w stanach chorobowych FGF może skutkować apoptozą czy zwłóknieniem kardiomiocytów, co się wiąże z rozwojem dysfunkcji czy niewydolności serca (HF). W ostatnich latach wykazano, że FGF może oddziaływać na układ sercowo-naczyniowy (CV) poprzez udział w gospodarce wapniowo-fosforanowej, zwłaszcza w hiperfosfatemii u pacjentów z niewydolnością nerek. W tym kontekście udowodniono, że podwyższone stężenie, zwłaszcza FGF23, w surowicy może bezpośrednio wpływać na kardiomiocyty poprzez receptor FGF4 (FGFR4), co przyczynia się ich przerostu w modelach przewlekłej choroby nerek, zwanej również kardiomiopatią mocznicową. Precyzyjna charakterystyka FGF, regulacja ekspresji, a co ważniejsze — identyfikacja izoform FGFR, które pośredniczą w oddziaływaniu na CV, powinny pomóc w opracowaniu nowych farmakologicznych interwencji związanych z HF, takich jak hamowanie FGFR4 w celu opanowania kardiomiopatii mocznicowej.

Streszczenie

Czynniki wzrostu fibroblastów (FGF) są mediatorami sygnałowymi, które wpływają na proliferację i przeżycie komórek. Wykazano, że różne rodzaje FGF indukują przebudowę serca w warunkach fizjologicznych oraz promują angiogenezę, co prowadzi do poprawy jego funkcji. Ponadto w stanach chorobowych FGF może skutkować apoptozą czy zwłóknieniem kardiomiocytów, co się wiąże z rozwojem dysfunkcji czy niewydolności serca (HF). W ostatnich latach wykazano, że FGF może oddziaływać na układ sercowo-naczyniowy (CV) poprzez udział w gospodarce wapniowo-fosforanowej, zwłaszcza w hiperfosfatemii u pacjentów z niewydolnością nerek. W tym kontekście udowodniono, że podwyższone stężenie, zwłaszcza FGF23, w surowicy może bezpośrednio wpływać na kardiomiocyty poprzez receptor FGF4 (FGFR4), co przyczynia się ich przerostu w modelach przewlekłej choroby nerek, zwanej również kardiomiopatią mocznicową. Precyzyjna charakterystyka FGF, regulacja ekspresji, a co ważniejsze — identyfikacja izoform FGFR, które pośredniczą w oddziaływaniu na CV, powinny pomóc w opracowaniu nowych farmakologicznych interwencji związanych z HF, takich jak hamowanie FGFR4 w celu opanowania kardiomiopatii mocznicowej.
Pobierz cytowanie

Słowa kluczowe

przewlekła choroba nerek, czynnik wzrostu fibroblastów, kardiomiopatia mocznicowa

Informacje o artykule
Tytuł

Wpływ czynników wzrostu fibroblastów na układ sercowo-naczyniowy

Czasopismo

Choroby Serca i Naczyń

Numer

Tom 15, Nr 3 (2018)

Strony

165-176

Rekord bibliograficzny

Choroby Serca i Naczyń 2018;15(3):165-176.

Słowa kluczowe

przewlekła choroba nerek
czynnik wzrostu fibroblastów
kardiomiopatia mocznicowa

Autorzy

Zbigniew Heleniak
Marek Karowiec
Alicja Dębska-Ślizień

Referencje (137)
  1. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008; 358(13): 1370–1380.
  2. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003; 65: 45–79.
  3. Parker TG, Schneider MD. Growth factors proto-oncogenes and plasticity of the cardiac phenotype. Ann Rev Physiol. 1991; 53(1): 179–200.
  4. Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res. 2002; 91(12): 1103–1113.
  5. Crone SA, Zhao YY, Fan L, et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med. 2002; 8(5): 459–465.
  6. Troncoso R, Ibarra C, Vicencio JM, et al. New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab. 2014; 25(3): 128–137.
  7. Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol. 2013; 14(1): 38–48.
  8. Chung E, Leinwand LA. Pregnancy as a cardiac stress model. Cardiovasc Res. 2014; 101(4): 561–570.
  9. Ozcelik C, Erdmann B, Pilz B, et al. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci U S A. 2002; 99(13): 8880–8885.
  10. Fukazawa R. Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. Journal of Molecular and Cellular Cardiology. 2003; 35(12): 1473–1479.
  11. Lemmens K, Segers VFM, Demolder M, et al. Role of neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk. J Biol Chem. 2006; 281(28): 19469–19477.
  12. Lemmens K, Doggen K, Keulenaer GDe. Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease. Circulation. 2007; 116(8): 954–960.
  13. De Keulenaer GW, Doggen K, Lemmens K. The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res. 2010; 106(1): 35–46.
  14. Itoh N, Ornitz D. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004; 20(11): 563–569.
  15. Szebenyi G, Fallon JF. Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytol. 1999; 185: 45–106.
  16. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005; 16(2): 139–149.
  17. Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem. 2011; 149(2): 121–130.
  18. Goldfarb M, Schoorlemmer J, Williams A, et al. Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron. 2007; 55(3): 449–463.
  19. Laezza F, Lampert A, Kozel MA, et al. FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium channels. Mol Cell Neurosci. 2009; 42(2): 90–101.
  20. Yayon A, Klagsbrun M, Esko J, et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991; 64(4): 841–848.
  21. Rapraeger A, Krufka A, Olwin B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991; 252(5013): 1705–1708.
  22. Spivak-Kroizman T, Lemmon MA, Dikic I, et al. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell. 1994; 79(6): 1015–1024.
  23. Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007; 27(9): 3417–3428.
  24. Harmer N, Pellegrini L, Chirgadze D, et al. The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF family and offers a structural basis for its unusual receptor affinity. Biochemistry. 2004; 43(3): 629–640.
  25. Sheikh F, Fandrich RR, Kardami E, et al. Overexpression of long or short FGFR-1 results in FGF-2-mediated proliferation in neonatal cardiac myocyte cultures. Cardiovasc Res. 1999; 42(3): 696–705.
  26. Lavine KJ, Yu K, White AC, et al. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005; 8(1): 85–95.
  27. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006; 444(7120): 770–774.
  28. Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006; 281(10): 6120–6123.
  29. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390(6655): 45–51.
  30. Fon Tacer K, Bookout AL, Ding X, et al. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010; 24(10): 2050–2064.
  31. Vega-Hernandez M, Kovacs A, Langhe SDe, et al. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development. 2011; 138(15): 3331–3340.
  32. Marguerie A, Bajolle F, Zaffran S, et al. Congenital heart defects in Fgfr2-IIIb and Fgf10 mutant mice. Cardiovasc Res. 2006; 71(1): 50–60.
  33. Grabner A, Amaral AP, Schramm K, et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 2015; 22(6): 1020–1032.
  34. Hughes SE. Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J Histochem Cytochem. 1997; 45(7): 1005–1019.
  35. Stark KL, McMahon JA, McMahon AP. FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development. 1991; 113(2): 641–651.
  36. Partanen J, Mäkelä TP, Eerola E, et al. FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J. 1991; 10(6): 1347–1354.
  37. Leifheit-Nestler M, Große Siemer R, Flasbart K, et al. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transplant. 2016; 31(7): 1088–1099.
  38. Liu X, Wu X, Cai L, et al. Calreticulin downregulation is associated with FGF-2-induced angiogenesis through calcineurin pathway in ischemic myocardium. Shock. 2008; 29(1): 140–148.
  39. Jiang ZS, Padua RR, Ju H, et al. Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. Am J Physiol Heart Circ Physiol. 2002; 282(3): H1071–H1080.
  40. Htun P, Ito WD, Hoefer IE, et al. Intramyocardial infusion of FGF-1 mimics ischemic preconditioning in pig myocardium. J Mol Cell Cardiol. 1998; 30(4): 867–877.
  41. Freundlich M, Li YC, Quiroz Y, et al. Paricalcitol downregulates myocardial renin-angiotensin and fibroblast growth factor expression and attenuates cardiac hypertrophy in uremic rats. Am J Hypertens. 2014; 27(5): 720–726.
  42. Di Marco GS, Reuter S, Kentrup D, et al. Cardioprotective effect of calcineurin inhibition in an animal model of renal disease. Eur Heart J. 2011; 32(15): 1935–1945.
  43. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010; 10(2): 116–129.
  44. Oliveras-Ferraros C, Cufí S, Queralt B, et al. Cross-suppression of EGFR ligands amphiregulin and epiregulin and de-repression of FGFR3 signalling contribute to cetuximab resistance in wild-type KRAS tumour cells. Br J Cancer. 2012; 106(8): 1406–1414.
  45. Wesche J, Haglund K, Haugsten EM. Fibroblast growth factors and their receptors in cancer. Biochem J. 2011; 437(2): 199–213.
  46. Kardami E, Jiang ZS, Jimenez SK, et al. Fibroblast growth factor 2 isoforms and cardiac hypertrophy. Cardiovasc Res. 2004; 63(3): 458–466.
  47. Kardami E, Detillieux K, Ma X, et al. Fibroblast growth factor-2 and cardioprotection. Heart Fail Rev. 2007; 12(3–4): 267–277.
  48. Cummins P. Fibroblast and transforming growth factor expression in the cardiac myocyte. Cardiovasc Res. 1993; 27(7): 1150–1154.
  49. Parker TG, Packer SE, Schneider MD. Peptide growth factors can provoke. J Clin Invest. 1990; 85(2): 507–514.
  50. Merle PL, Feige JJ, Verdetti J. Basic fibroblast growth factor activates calcium channels in neonatal rat cardiomyocytes. Biol Chem. 1995; 270(29): 17361–17367.
  51. Cui G, Chen H, Cui W, et al. FGF2 prevents sunitinib-induced cardiotoxicity in zebrafish and cardiomyoblast H9c2 cells. Cardiovasc Toxicol. 2016; 16(1): 46–53.
  52. Pellieux C, Foletti A, Peduto G, et al. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. Clin Invest. 2001; 108(12): 1843–1851.
  53. Bogoyevitch MA, Glennon PE, Andersson A, et al. Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. Biol Chem. 1994; 269(2): 1110–1119.
  54. Padua RR, Merle PL, Doble BW, et al. FGF-2-induced negative inotropism and cardioprotection are inhibited by chelerythrine: involvement of sarcolemmal calcium-independent protein kinase C. J Mol Cell Cardiol. 1998; 30(12): 2695–2709.
  55. Sheikh F, Sontag DP, Fandrich RR, et al. Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. Am J Physiol Heart Circ Physiol. 2001; 280(3): H1039–H1050.
  56. House SL, House BE, Glascock B, et al. S.L. House, B.E. House, B. GlascFibroblast growth factor 2 mediates isoproterenol-induced cardiac hypertrophy through activation of the extracellular regulated kinase. Mol Cell Pharmacol. 2010; 2(4): 143–154.
  57. Tappia P, Padua R, Panagia V, et al. Fibroblast growth factor-2 stimulates phospholipase Cβ in adult cardiomyocytes. Biochem Cell Biol. 1999; 77(6): 569–575.
  58. Srisakuldee W, Nickel BE, Fandrich RR, et al. Administration of FGF-2 to the heart stimulates connexin-43 phosphorylation at protein kinase C target sites. Cell Commun Adhes. 2006; 13(1–2): 13–19.
  59. House S, Bolte C, Zhou M, et al. Cardiac-Specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia. Circulation. 2003; 108(25): 3140–3148.
  60. Scheinowitz M, Kotlyar AA, Zimand S, et al. Effect of basic fibroblast growth factor on left ventricular geometry in rats subjected to coronary occlusion and reperfusion. Isr Med Assoc J. 2002; 4: 109–113.
  61. Virag JAI, Rolle ML, Reece J, et al. Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol. 2007; 171(5): 1431–1440.
  62. Santiago JJ, McNaughton LJ, Koleini N, et al. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling. PLoS One. 2014; 9(5): e97281.
  63. Meij JTA, Sheikh F, Jimenez SK, et al. Exacerbation of myocardial injury in transgenic mice overexpressing FGF-2 is T cell dependent. Am J Physiol Heart Circ Physiol. 2002; 282(2): H547–H555.
  64. Jimenez SK, Jassal DS, Kardami E, et al. Protection by endogenous FGF-2 against isoproterenol-induced cardiac dysfunction is attenuated by cyclosporine A. Mol Cell Biochem. 2011; 357(1–2): 1–8.
  65. Fiebeler A, Schmidt F, Müller D, et al. Mineralocorticoid receptor affects AP-1 and nuclear factor-κb activation in angiotensin II–induced cardiac injury. Hypertension. 2001; 37(2): 787–793.
  66. Padua RR, Sethi R, Dhalla NS, et al. Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol Cell Biochem. 1995; 143(2): 129–135.
  67. Kawasuji M, Nagamine H, Ikeda M, et al. Therapeutic angiogenesis with intramyocardial administration of basic fibroblast growth factor. Ann Thorac Surg. 2000; 69(4): 1155–1161.
  68. Iwakura A, Fujita M, Kataoka K, et al. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessel. 2003; 18(2): 93–99.
  69. House SL, Wang J, Castro AM, et al. Fibroblast growth factor 2 is an essential cardioprotective factor in a closed-chest model of cardiac ischemia-reperfusion injury. Physiol Rep. 2015; 3(1).
  70. Meng X, Brown J, Ao L, et al. Reduction of infarct size in the rat heart by lps preconditioning is associated with expression of angiogenic growth factors and increased capillary density. Shock. 1999; 12(1): 25–31.
  71. Scheinowitz M, Kotlyar A, Zimand S, et al. Basic fibroblast growth factor induces myocardial hypertrophy following acute infarction in rats. Exp Physiol. 1998; 83(5): 585–593.
  72. Jiang ZS, Jeyaraman M, Wen GB, et al. High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. J Mol Cell Cardiol. 2007; 42(1): 222–233.
  73. Zhao T, Zhao W, Chen Y, et al. Acidic and basic fibroblast growth factors involved in cardiac angiogenesis following infarction. Int J Cardiol. 2011; 152(3): 307–313.
  74. Rosenblatt-Velin N, Lepore MG, Cartoni C, et al. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest. 2005; 115(7): 1724–1733.
  75. Yanagisawa-Miwa A, Uchida Y, Nakamura F, et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science. 1992; 257(5075): 1401–1403.
  76. Unger EF, Banai S, Shou M, et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol. 1994; 266(4, pt. 2): H1588–H1595.
  77. Casscells W, Speir E, Sasse J, et al. Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest. 1990; 85(2): 433–441.
  78. Speir E, Yi-Fu Z, Lee M, et al. Fibroblast growth factors are present in adult cardiac myocytes, In vivo. Biophys Res Commun. 1988; 157(3): 1336–1340.
  79. Kardami E, Fandrich RR. Basic fibroblast growth factor in atria and ventricles of the vertebrate heart. J Cell Biol. 1989; 109(4, pt. 1): 1865–1875.
  80. Schultz JE, Witt SA, Nieman ML, et al. Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J Clin Invest. 1999; 104(6): 709–719.
  81. Zhou M, Sutliff RL, Paul RJ, et al. Fibroblast growth factor 2 control of vascular tone. Nat Med. 1998; 4(2): 201–207.
  82. Iwakura A, Fujita M, Ikemoto M, et al. Myocardial ischemia enhances the expression of acidic fibroblast growth factor in human pericardial fluid. Heart Vessel. 2000; 15(3): 112–116.
  83. Suzuki G, Lee TC, Fallavollita JA, et al. Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res. 2005; 96(7): 767–775.
  84. Korf-Klingebiel M, Kempf T, Schlüter KD, et al. Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction. Circulation. 2011; 123(5): 504–514.
  85. Wang J, Sontag D, Cattini P. Heart-specific expression of FGF-16 and a potential role in postnatal cardioprotection. Cytokine Growth Factor Rev. 2015; 26(1): 59–66.
  86. Sontag DP, Wang J, Kardami E, et al. FGF-2 and FGF-16 protect isolated perfused mouse hearts from acute doxorubicin-induced contractile dysfunction. Cardiovasc Toxicol. 2013; 13(3): 244–253.
  87. Ornitz D. Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends Genet. 2008; 24(1): 33–40.
  88. Angelin Bo, Larsson T, Rudling M. Circulating fibroblast growth factors as metabolic regulators — a critical appraisal. Cell Metab. 2012; 16(6): 693–705.
  89. Kharitonenkov A. FGFs and metabolism. Curr Opin Pharmacol. 2009; 9(6): 805–810.
  90. Kuro-o M. Klotho and βKlotho. Adv Exp Med Biol. 2012; 728: 25–40.
  91. Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab. 2015; 26(1): 22–29.
  92. Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005; 2(4): 217–225.
  93. Holt JA. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 2003; 17(13): 1581–1591.
  94. Shin DJ, Osborne TF. FGF15/FGFR4 integrates growth factor signaling with hepatic bile acid metabolism and insulin action. J Biol Chem. 2009; 284(17): 11110–11120.
  95. Nicholes K, Guillet S, Tomlinson E, et al. A mouse model of hepatocellular carcinoma. Am J Pathol. 2002; 160(6): 2295–2307.
  96. Wu X, Ge H, Lemon B, et al. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem. 2010; 285(8): 5165–5170.
  97. Markan KR, Naber MC, Ameka MK, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014; 63(12): 4057–4063.
  98. Ding X, Boney-Montoya J, Owen B, et al. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metabolism. 2012; 16(3): 387–393.
  99. Adams AC, Cheng CC, Coskun T, et al. FGF21 requires betaklotho to act in vivo. PLoS One. 2012; 7(11): e49977.
  100. Adams AC, Yang C, Coskun T, et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab. 2012; 2(1): 31–37.
  101. Foltz IN, Hu S, King C, et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the βKlotho/FGFR1c receptor complex. Sci Transl Med. 2012; 4(162): 162ra153.
  102. Saito H, Maeda A, Ohtomo SI, et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005; 280(4): 2543–2549.
  103. Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004; 19(3): 429–435.
  104. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007; 117(12): 4003–4008.
  105. Ito S, Kinoshita S, Shiraishi N, et al. Molecular cloning and expression analyses of mouse βklotho, which encodes a novel Klotho family protein. Mech Dev. 2000; 98(1–2): 115–119.
  106. Planavila A, Redondo I, Hondares E, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun. 2013; 4: 2019.
  107. Liu SQ, Roberts D, Kharitonenkov A, et al. Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci Rep. 2013; 3: 2767.
  108. Planavila A, Redondo-Angulo I, Ribas F, et al. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc Res. 2015; 106(1): 19–31.
  109. Patel V, Adya R, Chen J, et al. Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts. PLoS One. 2014; 9: e87102.
  110. Yan X, Chen J, Zhang C, et al. FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J Cell Mol Med. 2015; 19(7): 1557–1568.
  111. Joki Y, Ohashi K, Yuasa D, et al. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem Biophys Res Commun. 2015; 459(1): 124–130.
  112. Tanajak P, Sa-nguanmoo P, Wang X, et al. Fibroblast growth factor 21 (FGF21) therapy attenuates left ventricular dysfunction and metabolic disturbance by improving FGF21 sensitivity, cardiac mitochondrial redox homoeostasis and structural changes in pre-diabetic rats. Acta Physiologica. 2016; 217(4): 287–299.
  113. Brahma MK, Adam RC, Pollak NM, et al. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. J Lipid Res. 2014; 55(11): 2229–2241.
  114. Zhang C, Huang Z, Gu J, et al. Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia. 2015; 58(8): 1937–1948.
  115. Lin Z, Wu Z, Yin X, et al. Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile. PLoS One. 2010; 5(12): e15534.
  116. Zhang W, Chu S, Ding W, et al. Serum level of fibroblast growth factor 21 is independently associated with acute myocardial infarction. PLoS One. 2015; 10(6): e0129791.
  117. Han X, Chen C, Cheng G, et al. Serum fibroblast growth factor 21 levels are increased in atrial fibrillation patients. Cytokine. 2015; 73(1): 176–180.
  118. Wang R, Yi X, Li X, et al. Fibroblast growth factor-21 is positively associated with atrial fibrosis in atrial fibrillation patients with rheumatic heart disease. Int J Clin Exp Pathol. 2015; 8(11): 14901–14908.
  119. Chou RH, Huang PH, Hsu CY, et al. Circulating fibroblast growth factor 21 is associated with diastolic dysfunction in heart failure patients with preserved ejection fraction. Sci Rep. 2016; 6: 33953.
  120. Lenart-Lipińska M, Matyjaszek-Matuszek B, Gernand W, et al. Serum fibroblast growth factor 21 is predictive of combined cardiovascular morbidity and mortality in patients with type 2 diabetes at a relatively short-term follow-up. Diabetes Res Clin Pract. 2013; 101(2): 194–200.
  121. Ong KL, Januszewski AS, O'Connell R, et al. The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the Fenofibrate intervention and event lowering in diabetes study. Diabetologia. 2015; 58: 464–473.
  122. Zhang J, Cheng Y, Gu J, et al. Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of Type 1 diabetic mice. Clin Sci (Lond). 2016; 130(8): 625–641.
  123. Touchberry CD, Green TM, Tchikrizov V, et al. FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. Am J Physiol Endocrinol Metab. 2013; 304(8): E863–E873.
  124. Speir E, Tanner V, Gonzalez AM, et al. Acidic and basic fibroblast growth factors in adult rat heart myocytes. Localization, regulation in culture, and effects on DNA synthesis. Circ Res. 1992; 71(2): 251–259.
  125. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011; 121(11): 4393–4408.
  126. Lowrie EG, Huang WH, Lew NL. Death risk predictors among peritoneal dialysis and hemodialysis patients: a preliminary comparison. Am J Kidney Dis. 1995; 26(1): 220–228.
  127. Gutiérrez O, Januzzi J, Isakova T, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009; 119(19): 2545–2552.
  128. Block GA, Wheeler DC, Persky MS, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol. 2012; 23(8): 1407–1415.
  129. Shalhoub V, Shatzen EM, Ward SC, et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest. 2012; 122(7): 2543–2553.
  130. Dai B, David V, Martin A, et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of amouse CKD model. PLoS One. 2012; 7(9): e44161.
  131. Andrukhova O, Slavic S, Smorodchenko A, et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014; 6(6): 744–759.
  132. Andersen IA, Huntley BK, Sandberg SS, et al. Elevation of circulating but not myocardial FGF23 in human acute decompensated heart failure. Nephrol Dial Transplant. 2016; 31(5): 767–772.
  133. Richter M, Polyakova V, Gajawada P. Oncostatin M induces FGF23 expression in cardiomyocytes. J Clin Exp Cardiolog. 2012; 9: 3.
  134. Yan L, Mathew L, Chellan B, et al. S100/Calgranulin-mediated inflammation accelerates left ventricular hypertrophy and aortic valve sclerosis in chronic kidney disease in a receptor for advanced glycation end products-dependent manner. Arterioscler Thromb Vasc Biol. 2014; 34(7): 1399–1411.
  135. Liu Y, Liu Yu, Liu X, et al. Apocynin attenuates cardiac injury in type 4 cardiorenal syndrome via suppressing cardiac fibroblast growth factor-2 with oxidative stress inhibition. J Am Heart Assoc. 2015; 4(7).
  136. Reiche M, Bachmann A, Lössner U, et al. Fibroblast growth factor 19 serum levels: relation to renal function and metabolic parameters. Horm Metab Res. 2010; 42(3): 178–181.
  137. Han S, Choi S, Cho B, et al. Serum fibroblast growth factor–21 concentration is associated with residual renal function and insulin resistance in end-stage renal disease patients receiving long-term peritoneal dialysis. Metabolism. 2010; 59(11): 1656–1662.

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k. ul. Świętokrzyska 73, 80–180 Gdańsk

tel.: +48 58 320 94 94, faks:+48 58 320 94 60,  e-mail: viamedica@viamedica.pl