Tom 15, Nr 4 (2018)
Niewydolność serca
Opublikowany online: 2018-12-13

dostęp otwarty

Wyświetlenia strony 580
Wyświetlenia/pobrania artykułu 2397
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Niewydolność serca — nowe biomarkery na horyzoncie?

Agata Tymińska1, Agnieszka Kapłon-Cieślicka1, Krzysztof J. Filipiak1
Choroby Serca i Naczyń 2018;15(4):232-244.

Streszczenie

Niewydolność serca (HF) stanowi jeden z wiodących problemów współczesnej kardiologii. Dotyka coraz większej liczby pacjentów, wiąże się ze złym rokowaniem chorych oraz wysokimi kosztami społecznymi, wynikającymi przede wszystkim z dużej liczby hospitalizacji. Obecnie ważnym kierunkiem w poprawie procesu terapeutycznego HF jest poszukiwanie nowych markerów biologicznych. Celem pracy jest przedstawienie obiecujących biomarkerów biorących udział w patologicznych mechanizmach prowadzących do rozwoju HF. Spośród nich najbardziej cenne wydają się galektyna-3 oraz białko ST-2, odgrywające istotną rolę w remodelingu lewej komory i jej włóknieniu, jednego z kluczowych patofizjologicznych mechanizmów wpływających na rozwój HF. Galektyna-3 jest białkiem wydzielanym przez aktywowane makrofagi, stymulującym stan zapalny i włóknienie mięśnia sercowego. Białko ST-2 jest rozpuszczalną glikoproteiną z rodziny receptora interleukiny 1, wydzielaną przez komórki zapalne, kardiomiocyty i śródbłonek. Białko ST-2 występuje w dwóch istotnych klinicznie izoformach: przezbłonowej (ST-2L) oraz rozpuszczalnej (sST-2) krążącej swobodnie we krwi. Równowaga między obiema formami białka ST-2 gwarantuje prawidłowy efekt biologiczny. Interleukina 33 (IL-33) wiąże się z ST-2L, zapobiegając procesom włóknienia. Natomiast sST-2 obecne w środowisku zewnątrzkomórkowym wiąże się z wolną IL-33, kompetencyjnie dla receptora ST-2L, uruchamiając w ten sposób niekorzystny proces włóknienia mięśnia sercowego. Oba biomarkery wydają się mieć znaczenie w diagnostyce HF, szczególnie we wczesnych stadiach choroby, mogą także dostarczyć cennych informacji prognostycznych. Ich wartość jako dodatkowych markerów diagnostycznych i rokowniczych w ostrej i przewlekłej HF uznano w wytycznych Amerykańskiego Towarzystwa Kardiologicznego.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Ponikowski P, Voors A, Anker S, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016; 18(8): 891–975.
  2. Tymińska A, Kapłon-Cieślicka A, Ozierański K, et al. Anemia at Hospital Admission and Its Relation to Outcomes in Patients With Heart Failure (from the Polish Cohort of 2 European Society of Cardiology Heart Failure Registries). Am J Cardiol. 2017; 119(12): 2021–2029.
  3. Gierczyński J, Gryglewicz J, Karczewicz E, Zalewska H. Niewydolność serca — analiza kosztów ekonomicznych i społecznych. Uczelnia Łazarskiego, Warszawa 2013.
  4. Wu AHB, Wians F, Jaffe A. Biological variation of galectin-3 and soluble ST2 for chronic heart failure: implication on interpretation of test results. Am Heart J. 2013; 165(6): 995–999.
  5. Wu AHB. Serial testing of B-type natriuretic peptide and NTpro-BNP for monitoring therapy of heart failure: the role of biologic variation in the interpretation of results. Am Heart J. 2006; 152(5): 828–834.
  6. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013; 128(16): 1810–1852.
  7. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, et al. ESC Scientific Document Group. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines:  The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016; 37(36): 2768–2801.
  8. Bayes-Genis A, de Antonio M, Vila J, et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. J Am Coll Cardiol. 2014; 63(2): 158–166.
  9. Karayannis G, Triposkiadis F, Skoularigis J, et al. The emerging role of Galectin-3 and ST2 in heart failure: practical considerations and pitfalls using novel biomarkers. Curr Heart Fail Rep. 2013; 10(4): 441–449.
  10. Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008; 10: e17.
  11. Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012; 60(14): 1249–1256.
  12. Barboni EA, Bawumia S, Henrick K, et al. Molecular modeling and mutagenesis studies of the N-terminal domains of galectin-3: evidence for participation with the C-terminal carbohydrate recognition domain in oligosaccharide binding. Glycobiology. 2000; 10(11): 1201–1208.
  13. Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008; 7(10): 827–840.
  14. Shimpo M, Morrow DA, Weinberg EO, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002; 106(23): 2961–2966.
  15. Sanada S, Hakuno D, Higgins LJ, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007; 117(6): 1538–1549.
  16. Meijers WC, van der Velde AR, Pascual-Figal DA, et al. Galectin-3 and post-myocardial infarction cardiac remodeling. Eur J Pharmacol. 2015; 763(Pt A): 115–121.
  17. de Boer RA, Voors AA, Muntendam P, et al. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009; 11(9): 811–817.
  18. Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004; 110(19): 3121–3128.
  19. Januzzi JL, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007; 50(7): 607–613.
  20. Lin YH, Lin LY, Wu YW, et al. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta. 2009; 409(1-2): 96–99.
  21. Liu YHe, D'Ambrosio M, Liao Td, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009; 296(2): H404–H412.
  22. Lok DJ, Lok SI, Bruggink-André de la Porte PW, et al. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013; 102(2): 103–110.
  23. de Boer RA, Lok DJA, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011; 43(1): 60–68.
  24. Polat V, Bozcali E, Uygun T, et al. Diagnostic significance of serum galectin-3 levels in heart failure with preserved ejection fraction. Acta Cardiol. 2016; 71(2): 191–197.
  25. van der Velde AR, Gullestad L, Ueland T, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013; 6(2): 219–226.
  26. Gullestad L, Ueland T, Kjekshus J, et al. The predictive value of galectin-3 for mortality and cardiovascular events in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Am Heart J. 2012; 164(6): 878–883.
  27. Meijers WC, Januzzi JL, deFilippi C, et al. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: a pooled analysis of 3 clinical trials. Am Heart J. 2014; 167(6): 853–60.e4.
  28. Felker GM, Fiuzat M, Shaw LK, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012; 5(1): 72–78.
  29. Meijers WC, de Boer RA, van Veldhuisen DJ, et al. Biomarkers and low risk in heart failure. Data from COACH and TRIUMPH. Eur J Heart Fail. 2015; 17(12): 1271–1282.
  30. deFilippi CR, Felker GM. Galectin-3 in heart failure — linking fibrosis, remodeling, and progression. ECR. 2010; 6(2): 33–36.
  31. Feola M, Testa M, Leto L, et al. Role of galectin-3 and plasma B type-natriuretic peptide in predicting prognosis in discharged chronic heart failure patients. Medicine (Baltimore). 2016; 95(26): e4014.
  32. de Boer RA, van Veldhuisen DJ, Gansevoort RT, et al. The fibrosis marker galectin-3 and outcome in the general population. J Intern Med. 2012; 272(1): 55–64.
  33. van der Velde AR, Meijers WC, Ho JE, et al. Serial galectin-3 and future cardiovascular disease in the general population. Heart. 2016; 102(14): 1134–1141.
  34. Beltrami M, Ruocco G, Dastidar AG, et al. Additional value of galectin-3 to BNP in acute heart failure patients with preserved ejection fraction. Clin Chim Acta. 2016; 457: 99–105.
  35. Stoltze Gaborit F, Bosselmann H, Kistorp C, et al. Galectin 3: association to neurohumoral activity, echocardiographic parameters and renal function in outpatients with heart failure. BMC Cardiovasc Disord. 2016; 16: 117.
  36. Gopal DM, Kommineni M, Ayalon N, et al. Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc. 2012; 1(5): e000760.
  37. Kakkar R, Hei H, Dobner S, et al. Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J Biol Chem. 2012; 287(9): 6941–6948.
  38. Dieplinger B, Gegenhuber A, Kaar G, et al. Prognostic value of established and novel biomarkers in patients with shortness of breath attending an emergency department. Clin Biochem. 2010; 43(9): 714–719.
  39. Felker GM, Fiuzat M, Thompson V, et al. Soluble ST2 in ambulatory patients with heart failure: association with functional capacity and long-term outcomes. Circ Heart Fail. 2013; 6(6): 1172–1179.
  40. Pascual-Figal DA, Ordoñez-Llanos J, Tornel PL, et al. MUSIC Investigators. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. J Am Coll Cardiol. 2009; 54(23): 2174–2179.
  41. Shah RV, Chen-Tournoux AA, Picard MH, et al. Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circ Heart Fail. 2009; 2(4): 311–319.
  42. Ky B, French B, McCloskey K, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011; 4(2): 180–187.
  43. Friões F, Lourenço P, Laszczynska O, et al. Prognostic value of sST2 added to BNP in acute heart failure with preserved or reduced ejection fraction. Clin Res Cardiol. 2015; 104(6): 491–499.
  44. Manzano-Fernández S, Mueller T, Pascual-Figal D, et al. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am J Cardiol. 2011; 107(2): 259–267.
  45. Potocki M, Ziller R, Mueller C. Mid-regional pro-adrenomedullin in acute heart failure: a better biomarker or just another biomarker? Curr Heart Fail Rep. 2012; 9(3): 244–251.
  46. von Haehling S, Filippatos GS, Papassotiriou J, et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail. 2010; 12(5): 484–491.
  47. Maisel A, Mueller C, Nowak RM, et al. Midregion prohormone adrenomedullin and prognosis in patients presenting with acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol. 2011; 58(10): 1057–1067.
  48. Ara-Somohano C, Bonadona A, Carpentier F, et al. Evaluation of eight biomarkers to predict short-term mortality in patients with acute severe dyspnea. Minerva Anestesiol. 2017; 83(8): 824–835.
  49. Kawahara C, Tsutamoto T, Sakai H, et al. Prognostic value of serial measurements of highly sensitive cardiac troponin I in stable outpatients with nonischemic chronic heart failure. Am Heart J. 2011; 162(4): 639–645.
  50. Xue Y, Clopton P, Peacock WF, et al. Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur J Heart Fail. 2011; 13(1): 37–42.
  51. Kempf T, Horn-Wichmann R, Brabant G, et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem. 2007; 53(2): 284–291.
  52. Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007; 50(11): 1054–1060.
  53. Santhanakrishnan R, Chong JPC, Ng TP, et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2012; 14(12): 1338–1347.
  54. Pozsonyi Z, Förhécz Z, Gombos T, et al. Copeptin (C-terminal pro arginine-vasopressin) is an independent long-term prognostic marker in heart failure with reduced ejection fraction. Heart Lung Circ. 2015; 24(4): 359–367.
  55. Maisel A, Xue Y, Shah K, et al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin: secondary results from the Biomarkers in Acute Heart Failure (BACH) study. Circ Heart Fail. 2011; 4(5): 613–620.
  56. Alehagen U, Dahlström U, Rehfeld JF, et al. Association of copeptin and N-terminal proBNP concentrations with risk of cardiovascular death in older patients with symptoms of heart failure. JAMA. 2011; 305(20): 2088–2095.
  57. Monteiro S, Franco F, Costa S, et al. Prognostic value of CA125 in advanced heart failure patients. Int J Cardiol. 2010; 140(1): 115–118.
  58. Folga A, Filipiak KJ, Mamcarz A, et al. Simultaneous predictive value of NT-proBNP and CA-125 in patients newly diagnosed with advanced heart failure: preliminary results. Arch Med Sci. 2012; 8(4): 637–643.
  59. Goren Y, Kushnir M, Zafrir B, et al. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012; 14(2): 147–154.
  60. Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010; 106(6): 1035–1039.
  61. Fukushima Y, Nakanishi M, Nonogi H, et al. Assessment of plasma miRNAs in congestive heart failure. Circ J. 2011; 75(2): 336–340.
  62. Zhang Xi, Wan Y, Chata R, et al. A pilot study to demonstrate diagnostic potential of galectin-3 levels in saliva. J Clin Pathol. 2016; 69(12): 1100–1104.