Tom 15, Nr 4 (2018)
Nadciśnienie tętnicze
Opublikowany online: 2018-12-13

dostęp otwarty

Wyświetlenia strony 819
Wyświetlenia/pobrania artykułu 1391
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Obturacyjny bezdech senny i jego związek z nadciśnieniem tętniczym — wciąż aktualny temat

Paweł Binko1, Andrzej Wysokiński1
Choroby Serca i Naczyń 2018;15(4):226-231.

Streszczenie

Obturacyjny bezdech senny (OSA) jest chorobą zaliczaną do zaburzeń oddychania w trakcie snu. W wyniku obturacji górnych dróg oddechowych dochodzi do okresów przemijającego spłycenia oddechu lub całkowitych bezdechów. W następstwie powtarzającej się hipoksji dochodzi do pobudzenia układu współczulnego, upośledzenia funkcji śródbłonka oraz aktywacji układu renina–angiotensyna–aldosteron. Konsekwencją tego jest rozwój nadciśnienia tętniczego, które występuje u ponad 50% chorych na OSA. W leczeniu nadciśnienia tętniczego związanego z OSA duże znaczenie ma terapia z użyciem ciągłego dodatniego ciśnienia w drogach oddechowych (CPAP). W przypadku nadciśnienia lekoopornego zastosowanie znajduje denerwacja tętnic nerkowych.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014; 146(5): 1387–1394.
  2. Kiciński P, Zakrzewski M, Dybała A, et al. Obturacyjny bezdech senny — zasady diagnostyki i leczenia. FMR. 2012; 6(5): 228–235.
  3. Jordan AS, White DP. Pharyngeal motor control and the pathogenesis of obstructive sleep apnea. Respir Physiol Neurobiol. 2008; 160(1): 1–7.
  4. Berry RB, Budhiraja R, Gottlieb DJ, et al. American Academy of Sleep Medicine. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012; 8(5): 597–619.
  5. American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep. 1999; 22(5): 667–689.
  6. Johns M. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991; 14(6): 540–545.
  7. Chung F, Yegneswaran B, Liao Pu, et al. STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology. 2008; 108(5): 812–821.
  8. Chiu HY, Chen PY, Chuang LP, et al. Diagnostic accuracy of the Berlin questionnaire, STOP-BANG, STOP, and Epworth sleepiness scale in detecting obstructive sleep apnea: a bivariate meta-analysis. Sleep Med Rev. 2017; 36: 57–70.
  9. Marti-Soler H, Hirotsu C, Marques-Vidal P, et al. The NoSAS score for screening of sleep-disordered breathing: a derivation and validation study. Lancet Respir Med. 2016; 4(9): 742–748.
  10. Epstein LJ, Kristo D, Strollo PJ, et al. Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009; 5(3): 263–276.
  11. Lévy P, McNicholas W. Sleep apnoea and hypertension: time for recommendations. European Respiratory Journal. 2013; 41(3): 505–506.
  12. Sjöström C, Lindberg E, Elmasry A, et al. Prevalence of sleep apnoea and snoring in hypertensive men: a population based study. Thorax. 2002; 57(7): 602–607.
  13. Logan AG, Perlikowski SM, Mente A, et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens. 2001; 19(12): 2271–2277.
  14. Masood A, Devan M, Sana A. Review of and updates on hypertension in obstructive sleep apnea. Int J Hypertens. 2017; 2017: 1–13.
  15. Ziegler MG, Milic M, Elayan H. Cardiovascular regulation in obstructive sleep apnea. Drug Discov Today Dis Models. 2011; 8(4): 155–160.
  16. Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand. 2003; 177(3): 385–390.
  17. Wszedybyl-Winklewska M, Wolf J, Szarmach A, et al. Central sympathetic nervous system reinforcement in obstructive sleep apnoea. Sleep Med Rev. 2018; 39: 143–154.
  18. Goya TT, Silva RF, Guerra RS, et al. Increased muscle sympathetic nerve activity and impaired executive performance capacity in obstructive sleep apnea. Sleep. 2016; 39(1): 25–33.
  19. Vardhan V, Shanmuganandan K. Hypertension and catecholamine levels in sleep apnoea. Med J Armed Forces India. 2012; 68(1): 33–38.
  20. Cooper VL, Bowker CM, Pearson SB, et al. Effects of simulated obstructive sleep apnoea on the human carotid baroreceptor-vascular resistance reflex. J Physiol. 2004; 557(3): 1055–1065.
  21. Narkiewicz K, Pesek CA, Kato M, et al. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension. 1998; 32(6): 1039–1043.
  22. Schöbel C, Fietze I, Glos M, et al. Nocturnal snoring decreases daytime baroreceptor sensitivity. Respir Med. 2014; 108(7): 1049–1055.
  23. Atkeson A, Yeh SY, Malhotra A, et al. Endothelial function in obstructive sleep apnea. Prog Cardiovasc Dis. 2009; 51(5): 351–362.
  24. Jafari B, Mohsenin V. Endothelial dysfunction and hypertension in obstructive sleep apnea — is it due to intermittent hypoxia? J Cardiovasc Dis Res. 2013; 4(2): 87–91.
  25. Dinh QN, Drummond GR, Sobey CG, et al. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int. 2014; 2014: 1–11.
  26. Gonzaga C, Bertolami A, Bertolami M, et al. Obstructive sleep apnea, hypertension and cardiovascular diseases. J Hum Hypertens. 2015; 29(12): 705–712.
  27. Schillaci G, Battista F, Fiorenzano G, et al. Obstructive sleep apnea and cardiovascular disease — a new target for treatment. Curr Pharm Des. 2015; 21(24): 3496–3504.
  28. Atkeson A, Yeh SY, Malhotra A, et al. Mechanisms of endothelial dysfunction in obstructive sleep apnea. Vasc Health Risk Manag. 2008; 4(6): 1327–1335.
  29. Zhang W, Si Ly. Obstructive sleep apnea syndrome (OSAS) and hypertension: pathogenic mechanisms and possible therapeutic approaches. Ups J Med Sci. 2012; 117(4): 370–382.
  30. Dharmashankar K, Widlansky ME. Vascular endothelial function and hypertension: insights and directions. Curr Hypertens Rep. 2010; 12(6): 448–455.
  31. Brunetti L, Francavilla R, Scicchitano P, et al. Impact of sleep respiratory disorders on endothelial function in children. ScientificWorldJournal. 2013; 2013: 719456.
  32. Jelic S, Padeletti M, Kawut SM, et al. Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation. 2008; 117(17): 2270–2278.
  33. Carreras A, Zhang SX, Peris E, et al. Chronic sleep fragmentation induces endothelial dysfunction and structural vascular changes in mice. Sleep. 2014; 37(11): 1817–1824.
  34. Jin ZN, Wei YX. Meta-analysis of effects of obstructive sleep apnea on the renin-angiotensin-aldosterone system. J Geriatr Cardiol. 2016; 13(4): 333–343.
  35. Khayat R, Varadharaj S, Porter K, et al. Angiotensin Receptor Expression and Vascular Endothelial Dysfunction in Obstructive Sleep Apnea. Am J Hyperten. 2017; 31(3): 355–361.
  36. Lam SY, Liu Yu, Ng KM, et al. Upregulation of a local renin-angiotensin system in the rat carotid body during chronic intermittent hypoxia. Exp Physiol. 2014; 99(1): 220–231.
  37. Hasiec A, Szumowski Ł, Walczak F. Obturacyjny bezdech — senny zabójca. FMR. 2012; 6(3): 103–114.
  38. Kushida CA, Littner MR, Hirshkowitz M, et al. American Academy of Sleep Medicine. Practice parameters for the use of continuous and bilevel positive airway pressure devices to treat adult patients with sleep-related breathing disorders. Sleep. 2006; 29(3): 375–380.
  39. Denker MG, Cohen DL. Use of continuous positive airway pressure for sleep apnea in the treatment of hypertension. Curr Opin Nephrol Hypertens. 2014; 23(5): 462–467.
  40. Fatureto-Borges F, Lorenzi-Filho G, Drager LF. Effectiveness of continuous positive airway pressure in lowering blood pressure in patients with obstructive sleep apnea: a critical review of the literature. Integr Blood Press Control. 2016; 9: 43–47.
  41. Feldstein CA. Blood pressure effects of CPAP in nonresistant and resistant hypertension associated with OSA: A systematic review of randomized clinical trials. Clin Exp Hypertens. 2016; 38(4): 337–346.
  42. Lei Q, Lv Y, Li K, et al. Effects of continuous positive airway pressure on blood pressure in patients with resistant hypertension and obstructive sleep apnea: a systematic review and meta-analysis of six randomized controlled trials. J Bras Pneumol. 2017; 43(5): 373–379.
  43. Kostka-Jeziorny K, Kądziela J, Grajek S, et al. Denerwacja tętnic nerkowych — nowa inwazyjna metoda leczenia nadciśnienia tętniczego opornego. Arterial Hypertension. 2012; 16(1): 1–8.
  44. McArdle MJ, deGoma EM, Cohen DL, et al. Beyond blood pressure: percutaneous renal denervation for the management of sympathetic hyperactivity and associated disease states. J Am Heart Assoc. 2015; 4(3): e001415.
  45. Shantha GP, Pancholy SB. Effect of renal sympathetic denervation on apnea-hypopnea index in patients with obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath. 2015; 19(1): 29–34.
  46. Witkowski A, Prejbisz A, Florczak E, et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011; 58(4): 559–565.
  47. Linz D, Mancia G, Mahfoud F, et al. Global SYMPLICITY Registry Investigators. Renal artery denervation for treatment of patients with self-reported obstructive sleep apnea and resistant hypertension: results from the Global SYMPLICITY Registry. J Hypertens. 2017; 35(1): 148–153.
  48. Kario K, Bhatt DL, Kandzari DE, et al. Impact of renal denervation on patients with obstructive sleep apnea and resistant hypertension — insights from the SYMPLICITY HTN-3 trial. Circ J. 2016; 80(6): 1404–1412.