dostęp otwarty

Tom 14, Nr 5 (2017)
Z pogranicza kardiologii
Opublikowany online: 2018-03-06
Pobierz cytowanie

Osteoporoza a choroby układu sercowo-naczyniowego

Tomasz Zapolski, Wojciech Kornecki, Andrzej Wysokiński
Choroby Serca i Naczyń 2017;14(5):263-273.

dostęp otwarty

Tom 14, Nr 5 (2017)
Z pogranicza kardiologii
Opublikowany online: 2018-03-06

Streszczenie

Osteoporoza oraz choroby układu sercowo-naczyniowego traktowane były jako problemy niezależne patofizjologicznie i związane głównie z wiekiem oraz płcią. Coraz więcej danych wskazuje jednak, że są to procesy tylko częściowo związane ze zmniejszoną aktywnością hormonów płciowych i zależne od starzenia się organizmu. Głównym markerem osteoporozy jest zmniejszenie gęstości kości a podstawowym objawem towarzyszącym temu procesowi w obrębie układu sercowo-naczyniowego są zwapnienia o różnej lokalizacji. Wiele badań sugeruje wspólne tło etiopatogenetyczne obydwu tych schorzeń. W pracy omówiono mechanizmy patofizjologiczne łączące zjawisko utraty masy kostnej ze zwapnieniami układu sercowo-naczyniowego. Ponadto przedstawiono dowody kliniczne na związek osteoporozy i chorób układu sercowo-naczyniowego. Na zakończenie przeanalizowano potencjalne interwencje terapeutyczne korzystnie modyfikujące osteoporozę i zapobiegające zwapnieniom układu sercowo-naczyniowego.

Streszczenie

Osteoporoza oraz choroby układu sercowo-naczyniowego traktowane były jako problemy niezależne patofizjologicznie i związane głównie z wiekiem oraz płcią. Coraz więcej danych wskazuje jednak, że są to procesy tylko częściowo związane ze zmniejszoną aktywnością hormonów płciowych i zależne od starzenia się organizmu. Głównym markerem osteoporozy jest zmniejszenie gęstości kości a podstawowym objawem towarzyszącym temu procesowi w obrębie układu sercowo-naczyniowego są zwapnienia o różnej lokalizacji. Wiele badań sugeruje wspólne tło etiopatogenetyczne obydwu tych schorzeń. W pracy omówiono mechanizmy patofizjologiczne łączące zjawisko utraty masy kostnej ze zwapnieniami układu sercowo-naczyniowego. Ponadto przedstawiono dowody kliniczne na związek osteoporozy i chorób układu sercowo-naczyniowego. Na zakończenie przeanalizowano potencjalne interwencje terapeutyczne korzystnie modyfikujące osteoporozę i zapobiegające zwapnieniom układu sercowo-naczyniowego.
Pobierz cytowanie

Słowa kluczowe

osteoporoza, choroby układu sercowo-naczyniowego, zwapnienia, miażdżyca tętnic, sztywność tętnic

Informacje o artykule
Tytuł

Osteoporoza a choroby układu sercowo-naczyniowego

Czasopismo

Choroby Serca i Naczyń

Numer

Tom 14, Nr 5 (2017)

Strony

263-273

Data publikacji on-line

2018-03-06

Rekord bibliograficzny

Choroby Serca i Naczyń 2017;14(5):263-273.

Słowa kluczowe

osteoporoza
choroby układu sercowo-naczyniowego
zwapnienia
miażdżyca tętnic
sztywność tętnic

Autorzy

Tomasz Zapolski
Wojciech Kornecki
Andrzej Wysokiński

Referencje (74)
  1. Laslett LJ, Alagona P, Clark BA, et al. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol. 2012; 60(25 Suppl): S1–49.
  2. Amin S. Male osteoporosis: Epidemiology and pathophysiology. Curr Osteoporos Rep. 2003; 1(2): 71–77.
  3. Tankó LB, Christiansen C, Cox DA, et al. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res. 2005; 20(11): 1912–1920.
  4. Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006; 354(21): 2250–2261.
  5. McLean R. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009; 7(4): 134–139.
  6. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005; 352(16): 1685–1695.
  7. Cervellati C, Bonaccorsi G, Cremonini E, et al. Oxidative Stress and Bone Resorption Interplay as a Possible Trigger for Postmenopausal Osteoporosis. Biomed Res Int. 2014; 2014: 1–8.
  8. Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004; 84(4): 1381–1478.
  9. Deuell KA, Callegari A, Giachelli CM, et al. RANKL enhances macrophage paracrine pro-calcific activity in high phosphate-treated smooth muscle cells: dependence on IL-6 and TNF-α. J Vasc Res. 2012; 49(6): 510–521.
  10. Demer L, Tintut Y. Mechanisms linking osteoprosis and cardiovascular calcification. Curr Osteoporos Rep. 2009; 7(2): 42–46.
  11. Baszczuk A, Kopczyński Z. Hyperhomocysteinemia in patients with cardiovascular disease. Postepy Hig Med Dosw (Online). 2014; 68: 579–589.
  12. Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005; 3(8): 1646–1654.
  13. Grabysa R. Czy hiperhomocysteinemia jest rzeczywiście czynnikiem ryzyka miażdżycy? Pol Przegl Kardiol. 2007; 9: 289–293.
  14. Lello S, Capozzi A, Scambia G. Osteoporosis and cardiovascular disease: an update. Gynecol Endocrinol. 2015; 31(8): 590–594.
  15. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012; 33(7): 829–37, 837a.
  16. Riancho JA, Salas E, Zarrabeitia MT, et al. Expression and functional role of nitric oxide synthase in osteoblast-like cells. J Bone Miner Res. 1995; 10(3): 439–446.
  17. Merke J, Milde P, Lewicka S, et al. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest. 1989; 83(6): 1903–1915.
  18. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006; 81(3): 353–373.
  19. Li YC, Kong J, Wei M, et al. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002; 110(2): 229–238.
  20. Parazzini F. Resveratrol, inositol, vitamin D and K in the prevention of cardiovascular and osteoporotic risk: a novel approach in peri- and postmenopause. Minerva Ginecol. 2014; 66(5): 513–518.
  21. Buchanan G, Melvin T, Merritt B, et al. Vitamin K2 (menaquinone) Supplementation and its Benefits in Cardiovascular Disease, Osteoporosis, and Cancer. Marshall J Med. 2016; 2(3).
  22. Demer L, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2012; 117(22): 2938–2948.
  23. Braun J, Oldendorf M, Moshage W, et al. Electron beam computed tomography in the evaluation of cardiac calcifications in chronic dialysis patients. Am J Kidney Dis. 1996; 27(3): 394–401.
  24. Wang AY, Wang M, Woo J, et al. Cardiac Valve Calcification as an Important Predictor for All-Cause Mortality and Cardiovascular Mortality in Long-Term Peritoneal Dialysis Patients: A Prospective Study. J Am Soc Nephrol. 2003; 14(1): 159–168.
  25. Moe SM, Chen NX. Pathophysiology of vascular calcification in chronic kidney disease. Circ Res. 2004; 95(6): 560–567.
  26. Mönckeberg JG. Der normale histologische Bau und die Sklerose der Aortenklappen. Virchows Arch Pathol Anat Physiol. 1904; 176(3): 472–514.
  27. Aksoy Y, Yagmur C, Tekin GO, et al. Aortic valve calcification: association with bone mineral density and cardiovascular risk factors. Coron Artery Dis. 2005; 16(6): 379–383.
  28. Mohler III ER. Are atherosclerosis processes involved in aortic-valve calcification? Lancet. 2000; 356: 524–525.
  29. Zapolski T, Wysokiński A, Przegaliński J, et al. Nabyte wady zastawkowe serca a zmiany miażdżycowe w tętnicach wieńcowych. Kardiol Pol. 2004; 61: 539–543.
  30. Otto CM, O’Brien KD. Why is there discordance between calcific aortic stenosis and coronary artery disease? Heart. 2001; 85(6): 601–602.
  31. Adler Y, Fink N, Spector D, et al. Mitral annulus calcification — a window to diffuse atherosclerosis of the vascular system. Atherosclerosis. 2001; 155(1): 1–8.
  32. Tekin GO, Kekilli E, Yagmur J, et al. Evaluation of cardiovascular risk factors and bone mineral density in post menopausal women undergoing coronary angiography. Int J Cardiol. 2008; 131(1): 66–69.
  33. Sinnott B, Syed I, Sevrukov A, et al. Coronary calcification and osteoporosis in men and postmenopausal women are independent processes associated with aging. Calcif Tissue Int. 2006; 78(4): 195–202.
  34. Chan JJ, Cupples LA, Kiel DP, et al. QCT Volumetric Bone Mineral Density and Vascular and Valvular Calcification: The Framingham Study. J Bone Miner Res. 2015; 30(10): 1767–1774.
  35. Muntean L, Simon Sp, Popp R, et al. Bone mineral density, carotid artery intima-media thickness, and Klotho gene polymorphism in postmenopausal women. Cent Eur J Med. 2014; 9(2): 315.
  36. Mucowski SJ, Mack WJ, Shoupe D, et al. Effect of prior oophorectomy on changes in bone mineral density and carotid artery intima-media thickness in postmenopausal women. Fertil Steril. 2014; 101(4): 1117–1122.
  37. Norgren L, Hiatt WR, Dormandy JA, et al. TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). I Vasc Surg. 2007; 45(1): S5–S67.
  38. Mangiafico RA, Russo E, Riccobene S, et al. Increased prevalence of peripheral arterial disease in osteoporotic postmenopausal women. J Bone Miner Metab. 2006; 24(2): 125–131.
  39. van der Klift M, Pols HAP, Hak AE, et al. Bone mineral density and the risk of peripheral arterial disease: the Rotterdam Study. Calcif Tissue Int. 2002; 70(6): 443–449.
  40. Zapolski T, Wysokiński A. Sztywność aorty u chorych z miażdżycą tętnic wieńcowych. Pol Prz Kardiol. 2008; 8: 179–185.
  41. Bagger YZ, Tankó LB, Alexandersen P, et al. Prospective Epidemiological Risk Factors Study Group. Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med. 2006; 259(6): 598–605.
  42. Naves M, Rodríguez-García M, Díaz-López JB, et al. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporos Int. 2008; 19(8): 1161–1166.
  43. Safar ME, O'Rourke MF. The arterial system in hypertension. Kluwer Academic Publishers, Dordecht-Boston-London 1993.
  44. Knutsen KM, Stugaard M, Michelsen S, et al. M-mode echocardiographic findings in apparently healthy, non-athletic Norwegians aged 20-70 years. Influence of age, sex and body surface area. J Intern Med. 1989; 225(2): 111–115.
  45. Cavalcante JL, Lima JAC, Redheuil A, et al. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol. 2011; 57(14): 1511–1522.
  46. Hirose Ki, Tomiyama H, Okazaki R, et al. Increased Pulse Wave Velocity Associated with Reduced Calcaneal Quantitative Osteo-sono Index: Possible Relationship Between Atherosclerosis and Osteopenia. J Clin Endocrinol Metab. 2003; 88(6): 2573–2578.
  47. Sumino H, Ichikawa S, Kasama S, et al. Elevated arterial stiffness in postmenopausal women with osteoporosis. Maturitas. 2006; 55(3): 212–218.
  48. Avramovski P, Avramovska M, Sikole A. Bone Strength and Arterial Stiffness Impact on Cardiovascular Mortality in a General Population. J Osteoporos. 2016; 2016: 7030272.
  49. Frost ML, Grella R, Millasseau SC, et al. Relationship of calcification of atherosclerotic plaque and arterial stiffness to bone mineral density and osteoprotegerin in postmenopausal women referred for osteoporosis screening. Calcif Tissue Int. 2008; 83(2): 112–120.
  50. Cecelja M, Jiang B, Bevan L, et al. Arterial stiffening relates to arterial calcification but not to noncalcified atheroma in women. A twin study. J Am Coll Cardiol. 2011; 57(13): 1480–1486.
  51. Ye C, Xu M, Wang S, et al. Decreased Bone Mineral Density Is an Independent Predictor for the Development of Atherosclerosis: A Systematic Review and Meta-Analysis. PLoS One. 2016; 11(5): e0154740.
  52. Zapolski T, Wysokiński A. Aktualne poglądy na wzajemne oddziaływanie leczenia osteoporozy i chorób układu sercowo-naczyniowego. Wiad Lek. 2016; 69: 665–674.
  53. Zapolski T, Wysokiński A. Safety of pharmacotherapy of osteoporosis in cardiology patients. Cardiol J. 2010; 17(4): 335–343.
  54. Manolagas SC, Kousteni S, Jilka RL. Sex Steroids and Bone. Recent Prog Horm Res. 2002; 57(1): 385–409.
  55. Rossouw JE, Anderson GL, Prentice RL, et al. Writing Group for the Women's Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002; 288(3): 321–333.
  56. Hodis HN, Mack WJ, Henderson VW, et al. ELITE Research Group. Vascular Effects of Early versus Late Postmenopausal Treatment with Estradiol. N Engl J Med. 2016; 374(13): 1221–1231.
  57. National institute for health and clinical excellence: Appraisal consultation document: Alendronate, etidronate, risedronate, raloxifene, strontium ranelate and teriparatide for the secondary prevention of osteoporotic fragility fractures in postmenopausal women. www.nice.org.uk (February 2007).
  58. Wu M, Rementer C, Giachelli CM. Vascular calcification: an update on mechanisms and challenges in treatment. Calcif Tissue Int. 2013; 93(4): 365–373.
  59. Karur S, Veerappa V, Nanjappa M. Study of vitamin D deficiency prevalence in acute myocardial infarction. IJC Heart Vessels. 2014; 3: 57–59.
  60. Mao PJ, Zhang C, Tang L, et al. Effect of calcium or vitamin D supplementation on vascular outcomes: a meta-analysis of randomized controlled trials. Int J Cardiol. 2013; 169(2): 106–111.
  61. Beulens JWJ, Bots ML, Atsma F, et al. High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis. 2009; 203(2): 489–493.
  62. Knapen MHJ, Braam LA, Drummen NE, et al. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb Haemost. 2015; 113(5): 1135–1144.
  63. Huang ZB, Wan SL, Lu YJ, et al. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporos Int. 2015; 26(3): 1175–1186.
  64. Papapoulos SE. Bisphosphonates: how do they work? Best Pract Res Clin Endocrinol Metab. 2008; 22(5): 831–847.
  65. Igase M, Kohara K, Tabara Y, et al. Change in arterial stiffness associated with monthly bisphosphonate treatment in women with postmenopausal osteoporosis. Menopause. 2014; 21(9): 962–966.
  66. Gonnelli S, Caffarelli C, Tanzilli L, et al. Effects of intravenous zoledronate and ibandronate on carotid intima-media thickness, lipids and FGF-23 in postmenopausal osteoporotic women. Bone. 2014; 61: 27–32.
  67. Pittman CB, Davis LA, Zeringue AL, et al. Myocardial infarction risk among patients with fractures receiving bisphosphonates. Mayo Clin Proc. 2014; 89(1): 43–51.
  68. Wang JC, Chien WC, Chung CH, et al. Adverse cardiovascular effects of nitrogen-containing bisphosphonates in patients with osteoporosis: A nationwide population-based retrospective study. Int J Cardiol. 2016; 215: 232–237.
  69. Wu M, Rementer C, Giachelli CM. Vascular calcification: an update on mechanisms and challenges in treatment. Calcif Tissue Int. 2013; 93(4): 365–373.
  70. Kawahara T, Nishikawa M, Kawahara C, et al. Atorvastatin, etidronate, or both in patients at high risk for atherosclerotic aortic plaques: a randomized, controlled trial. Circulation. 2013; 127(23): 2327–2335.
  71. Reinholz GG, Getz B, Pederson L, et al. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000; 60: 6001–6007.
  72. Shimizu H, Nakagami H, Osako MK, et al. Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J. 2008; 22(7): 2465–2475.
  73. Donmez BO, Ozdemir S, Sarikanat M, et al. Effect of angiotensin II type 1 receptor blocker on osteoporotic rat femurs. Pharmacol Rep. 2012; 64(4): 878–888.
  74. Capozzi A, Lello S, Pontecorvi A. The inhibition of RANK-ligand in the management of postmenopausal osteoporosis and related fractures: the role of denosumab. Gynecol Endocrinol. 2014; 30(6): 403–408.

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k. ul. Świętokrzyska 73, 80–180 Gdańsk

tel.: +48 58 320 94 94, faks:+48 58 320 94 60,  e-mail: viamedica@viamedica.pl