Tom 14, Nr 2 (2017)
Diabetokardiologia
Opublikowany online: 2017-08-24

dostęp otwarty

Wyświetlenia strony 472
Wyświetlenia/pobrania artykułu 4664
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Efektywność i bezpieczeństwo stosowania blokerów SGLT2 u chorych na cukrzycę typu 2 z prawidłową lub upośledzoną funkcją nerek

Władysław Grzeszczak, Miroslaw Snit, Beata Stepanow
Choroby Serca i Naczyń 2017;14(2):75-82.

Streszczenie

Blokery kotransportera sodowo-glukozowego 2 (SGLT2) to nowa grupa leków hipoglikemizujących poprawiających wyrównanie glikemii, obniżających stężenie HbA1c, oraz przyczyniających się do spadku masy ciała przy jednoczesnym małym ryzyku wystąpienia hipoglikemii. W niniejszej pracy zaprezentowano aktualne dane dotyczące efektywności oraz bezpieczeństwa stosowania blokerów SGLT2 u chorych zarówno z prawidłową, jak i z upośledzoną funkcją nerek w stadium łagodnym, umiarkowanym i ciężkim.

Referencje

  1. IDF Atlas. http://www.diabetesatlas.org (23.02.2017).
  2. Gale EAM. Is there really an epidemic of type 2 diabetes? Lancet. 2003; 362(9383): 503–504.
  3. James WPT. The fundamental drivers of the obesity epidemic. Obes Rev. 2008; 9(Suppl 1): 6–13.
  4. DeFronzo RA, Davidson JA, Del Prato S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab. 2012; 14(1): 5–14.
  5. Wright EM, Loo DDF, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011; 91(2): 733–794.
  6. Guyton A, Hall J. Urine formation by the kidneys: II tubular processing of the glomerular filtrate. In: Guyton A, Hall J. ed. Textbook of medicine physiology. 11th ed. Elsevier Saunders, Philadelphia 2006: 327–347.
  7. Abdul-Ghani MA, DeFronzo RA. Lowering plasma glucose concentration by inhibiting renal sodium-glucose cotransport. J Intern Med. 2014; 276(4): 352–363.
  8. Rahmoune H, Thompson PW, Ward JM, et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes. 2005; 54(12): 3427–3434.
  9. Vick H, Diedrich D, Baumann K. Reevaluation of renal tubular glucose transport inhibition by phlorizin analogs. Am J Physiol. 1973; 224: 552–557.
  10. Rossetti L, Smith D, Shulman GI, et al. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. 1987; 79(5): 1510–1515.
  11. Rosenstock J, Aggarwal N, Polidori D, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. . Diabetes Care. 2012; 35(6): 1232–1238.
  12. Ferrannini E, Ramos SJ, Salsali A, et al. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2010; 33(10): 2217–2224.
  13. Strojek K, Yoon KH, Hruba V, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2011; 13(10): 928–938.
  14. Bolinder J, Ljunggren Ö, Kullberg J, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012; 97(3): 1020–1031.
  15. Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014; 124(2): 499–508.
  16. Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015; 21(5): 512–517.
  17. Novikov A, Vallon V. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update. Curr Opin Nephrol Hypertens. 2016; 25(1): 50–58.
  18. Nauck MA, del Prato SD, Meier JJ, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011; 34(9): 2015–2022.
  19. Zinman B, Wanner C, Lachin J, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373(22): 2117–2128.
  20. Berhan A, Barker A. Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: a meta-analysis of randomized double-blind controlled trials. BMC Endocr Disord. 2013; 13: 58.
  21. Inited Stated Food and Drug Administration. Dapagliflozin. Background document (database on the internet). http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM449865.pdf (20.03.2017).
  22. Ptaszynska A, Cohen S, Messing E, et al. Assessing bladder cancer risk in type 2 diabetes clinical trials: the dapagliflozin drug development program as a ‘case study’. Diabetes Ther. 2015; 6(3): 357–375.
  23. Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014; 85(4): 962–971.
  24. Yale J, Bakris G, Cariou B, et al. Efficacy and safetry of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013; 15(5): 463–473.
  25. Barnett A, Mithal A, Manassie J, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014; 2(5): 369–384.
  26. Qi W, Chen X, Holian J, et al. Transforming growth factor-beta1 differentially mediates fibronectin and inflammatory cytokine expression in kidney tubular cells. Am J Physiol Renal Physiology. 2006; 291(5): F1070–F1077.
  27. Panchapakesan U, Pegg K, Gross S, et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells — renoprotection in diabetic nephropathy? PLoS One. 2013; 8(2): e54442.
  28. Vallon V, Gerasimowa M, Rose MA, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic akita mice. Am J Physiol Renal Physiol. 2014; 306(2): F194–F204.
  29. Nagata T, Fukuzawa T, Takeda M, et al. Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function indb/dbmice. Br J Pharmacol. 2013; 170(3): 519–531.
  30. Sasson AN, Cherney DZi. Renal hyperfiltration related to diabetes mellitus and obesity in human disease. World J Diabetes. 2012; 3(1): 1–6.
  31. Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014; 129(5): 587–597.
  32. Henry RR, Rosenstock J, Edelman S, et al. Exploring the potential of the SGLT2 inhibitor dapagliflozin in type 1 diabetes: a randomized, double-blind, placebo-controlled pilot study. Diabetes Care. 2015; 38(3): 412–419.