Tom 13, Nr 6 (2016)
Z pogranicza kardiologii
Opublikowany online: 2017-04-06

dostęp otwarty

Wyświetlenia strony 2189
Wyświetlenia/pobrania artykułu 10170
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Kardiotoksyczność leczenia przeciwnowotworowego

Dominika Neumann, Katarzyna Korzeniowska, Jerzy Jankowski, Anna Jabłecka
Choroby Serca i Naczyń 2016;13(6):434-444.

Streszczenie

 Kardiotoksyczność chemioterapii lub radioterapii ma istotny wpływ na jakość życia oraz przedwcze­sny zgon pacjentów onkologicznych. Pacjenci przyjmujący chemioterapię stanowią grupę pod­wyższonego ryzyka zdarzeń sercowych — wśród nich najczęściej pojawiającym się powikłaniem jest dysfunkcja lewej komory z niewydolnością serca lub bez niej. W zależności od zastosowanej terapii toksyczność ta może być przemijająca lub trwała. Najlepiej poznane są powikłania kardiolo­giczne indukowane antracyklinami i trastuzuma­bem, lecz ich diagnostyka, prewencja i leczenie pozostają przedmiotem dalszych badań. W ni­niejszej pracy przedstawiono aktualny stan wie­dzy dotyczący definicji, czynników ryzyka oraz diagnostyki powikłań kardiologicznych terapii przeciwnowotworowej.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Lancellotti P, Anker SD, Donal E, et al. EACVI/HFA Cardiac Oncology Toxicity Registry in breast cancer patients: rationale, study design, and methodology (EACVI/HFA COT Registry)--EURObservational Research Program of the European Society of Cardiology. Eur Heart J Cardiovasc Imaging. 2015; 16(5): 466–470.
  2. Albini A, Pennesi G, Donatelli F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010; 102(1): 14–25.
  3. Lefrak EA, Pitha J, Rosenheim S, et al. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973; 32(2): 302–314.
  4. Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005; 23(13): 2900–2902.
  5. Curigliano G, Cardinale D, Suter T, et al. ESMO Guidelines Working Group. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012; 23 Suppl 7: vii155–vii166.
  6. National Cancer Institute. NCI Dictionary of Cancer Terms. http://www.cancer.gov/publications/dictionaries/cancer-terms? cdrid=44004. (27.08.2016).
  7. Opolski G, Krzakowski M, Szmit S, et al. Rekomendacje Krajowego Zespołu Nadzoru ogicznego i Onkologicznego dotyczące bezpieczeństwa kardiologicznego u chorych na raka piersi. Zapobieganie i postępowanie w powikłaniach sercowo-naczyniowych w raku piersi. Grupa Robocza Konsultantów Krajowych w Dziedzinie ogii i Onkologii Klinicznej ds. opracowania rekomendacji postępowania kardiologicznego u chorych na raka piersi. Kardiol Pol. 2011; 69: 520–530.
  8. Plana C, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the erican iety of aphy and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014; 27: 911–939.
  9. Gramatyka M. Kardiotoksyczność jako niepożądane działanie w terapii raka piersi Postępy Hig. Med Dośw. 2014; 68: 483–497.
  10. Eschenhagen T, Force T, Ewer MS, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011; 13(1): 1–10.
  11. Kawecka-Jaszcz K, Bednarek A, Styczkiewicz K. Postępowanie u chorych onkologicznych obciążonych wywiadem kardiologicznym. Onkol Prakt Klin. 2009; 5: 83–91.
  12. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979; 91(5): 710–717.
  13. Aapro M, Bernard-Marty C, Brain EGC, et al. Anthracycline cardiotoxicity in the elderly cancer patient: a SIOG expert position paper. Ann Oncol. 2011; 22(2): 257–267.
  14. Yeh ETH, Tong AT, Lenihan DJ, et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation. 2004; 109(25): 3122–3131.
  15. Lotrionte M, Biondi-Zoccai G, Abbate A, et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol. 2013; 112(12): 1980–1984.
  16. Dhesi S, Chu MP, Blevins G, et al. Cyclophosphamide-Induced Cardiomyopathy: A Case Report, Review, and Recommendations for Management. J Investig Med High Impact Case Rep. 2013; 1(1): 1–7.
  17. Ertem SY, Uckan S, Ozdemir H. An unusual presentation of an intraosseous epidermoid cyst of the anterior maxilla: a case report. J Med Case Rep. 2014; 8: 252.
  18. Sorrentino MF, Kim J, Foderaro AE, et al. 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiol J. 2012; 19(5): 453–458.
  19. Onitilo AA, Engel JM, Stankowski RV. Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther Adv Drug Saf. 2014; 5(4): 154–166.
  20. Visscher H, Ross CJD, Rassekh SR, et al. Canadian Pharmacogenomics Network for Drug Safety Consortium. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol. 2012; 30(13): 1422–1428.
  21. Blanco JG, Sun CL, Landier W, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes--a report from the Children's Oncology Group. J Clin Oncol. 2012; 30(13): 1415–1421.
  22. Ezaz G, Long JB, Gross CP, et al. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc. 2014; 3(1): e000472.
  23. Bhave M, Shah AN, Akhter N, et al. An update on the risk prediction and prevention of anticancer therapy-induced cardiotoxicity. Curr Opin Oncol. 2014; 26(6): 590–599.
  24. Ky B, Putt M, Sawaya H, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014; 63(8): 809–816.
  25. Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. Eur Heart J. 2013; 34(15): 1102–1111.
  26. Steinherz LJ, Steinherz PG, Tan CT, et al. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA. 1991; 266(12): 1672–1677.
  27. Steinherz LJ, Steinherz PG, Tan C. Cardiac failure and dysrhythmias 6-19 years after anthracycline therapy: a series of 15 patients. Med Pediatr Oncol. 1995; 24(6): 352–361.
  28. Shan K, Lincoff AM, Young JB. Anthracycline-induced cardiotoxicity. Ann Intern Med. 1996; 125(1): 47–58.
  29. Dudka J, Burdan F, Korga A, et al. Diagnostyka uszkodzeń i dysfunkcji mięśnia sercowego wywołanych antracyklinami. Post Hig Med Dośw. 2009; 63: 225–233.
  30. Barrett-Lee PJ, Dixon JM, Farrell C, et al. Expert opinion on the use of anthracyclines in patients with advanced breast cancer at cardiac risk. Ann Oncol. 2009; 20(5): 816–827.
  31. Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004; 56(2): 185–229.
  32. Korinek J, Kjaergaard J, Sengupta PP, et al. High spatial resolution speckle tracking improves accuracy of 2-dimensional strain measurements: an update on a new method in functional echocardiography. J Am Soc Echocardiogr. 2007; 20(2): 165–170.
  33. Drafts BC, Twomley KM, D'Agostino R, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013; 6(8): 877–885.
  34. Morandi P, Ruffini PA, Benvenuto GM, et al. Cardiac toxicity of high-dose chemotherapy. Bone Marrow Transplant. 2005; 35(4): 323–334.
  35. Ewer MS, Vooletich MT, Durand JB, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005; 23(31): 7820–7826.
  36. ChPL Herceptin. European Medicines Agency. http:////www.ema.europa.eu/docs/pl_PL/document_library/EPAR_-_Product_Information/human/000278/WC500074922.pdf. (27.08.2016).
  37. Iqbal N, Iqbal N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol Biol Int. 2014; 2014: 852748.
  38. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002; 20(5): 1215–1221.
  39. Moja L, Tagliabue L, Balduzzi S, et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev. 2012(4): CD006243.
  40. Balduzzi S, Mantarro S, Guarneri V, et al. Trastuzumab-containing regimens for metastatic breast cancer. Cochrane Database Syst Rev. 2014(6): CD006242.
  41. Ang C, Kornbluth M, Thirlwell MP, et al. Capecitabine-induced cardiotoxicity: case report and review of the literature. Curr Oncol. 2010; 17(1): 59–63.
  42. Mackey JR, Pieńkowski T, Crown J, et al. Translational Research In Oncology (TRIO)/ Breast Cancer International Research Group (BCIRG)-005 investigators, TRIO/BCIRG 001 investigators, Breast Cancer International Research Group 001 Investigators. Adjuvant docetaxel for node-positive breast cancer. N Engl J Med. 2005; 352(22): 2302–2313.
  43. Schimmel KJM, Richel DJ, van den Brink RBA, et al. Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev. 2004; 30(2): 181–191.
  44. Dudziak J, Słomczyński M, Torliński L. Powikłania kardiologiczne po chemioterapii — patomechanizm, diagnostyka, leczenie i zapobieganie. Chor. Serca Naczyń. 2009; 6: 73–81.
  45. Choueiri TK, Mayer EL, Je Y, et al. Congestive heart failure risk in patients with breast cancer treated with bevacizumab. J Clin Oncol. 2011; 29(6): 632–638.
  46. Qi WX, Fu S, Zhang Q, et al. Bevacizumab increases the risk of severe congestive heart failure in cancer patients: an up-to-date meta-analysis with a focus on different subgroups. Clin Drug Investig. 2014; 34(10): 681–690.
  47. U.S. Food and Drug Administration. Summary Minutes on the Oncologic Drugs Committee. http://www. fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/OncologicDrugsAdvisoryCommittee/UCM224753.pdf (27.08.2016).
  48. European Medicines Agency. European Medicines Agency completes its review of Avastin used in breast cancer treatment. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2010/12/WC500099929.pdf (27.08.2016).
  49. Chen XL, Lei YH, Liu CF, et al. Angiogenesis inhibitor bevacizumab increases the risk of ischemic heart disease associated with chemotherapy: a meta-analysis. PLoS One. 2013; 8(6): e66721.
  50. Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007; 370(9604): 2011–2019.
  51. Kerkelä R, Grazette L, Yacobi R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006; 12(8): 908–916.
  52. Hedhli N, Russell KS. Cardiotoxicity of molecularly targeted agents. Curr Cardiol Rev. 2011; 7(4): 221–233.
  53. Madan R, Benson R, Sharma DN, et al. Radiation induced heart disease: Pathogenesis, management and review literature. J Egypt Natl Canc Inst. 2015; 27(4): 187–193.
  54. Veinot JP, Edwards WD. Pathology of radiation-induced heart disease: a surgical and autopsy study of 27 cases. Hum Pathol. 1996; 27(8): 766–773.
  55. Bacchiani G, Cardinale D. Using biomarkers and early prophylactic treatment to prevent cardiotoxicity in cancer patients on chemotherapy. SA Heart J. 2012; 9: 250–262.
  56. Sawaya H, Sebag IA, Plana JC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012; 5(5): 596–603.
  57. Colombo A, Cardinale D. Using cardiac biomarkers and treating cardiotoxicity in cancer. Future Cardiol. 2013; 9(1): 105–118.
  58. Smiseth OA, Torp H, Opdahl A, et al. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016; 37(15): 1196–1207.
  59. Yu AF, Ky B. Roadmap for biomarkers of cancer therapy cardiotoxicity. Heart. 2016; 102(6): 425–430.
  60. O'Brien PJ. Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology. 2008; 245(3): 206–218.
  61. Kosmala W. Postępy w echokardiografii. Stan na 2002 rok. Adv Clin Exp Med. 2003; 12: 341–347.
  62. Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001; 19(5): 1444–1454.
  63. Lenihan DJ, Stevens PL, Massey M, et al. The Utility of Point-of-Care Biomarkers to Detect Cardiotoxicity During Anthracycline Chemotherapy: A Feasibility Study. J Card Fail. 2016; 22(6): 433–438.
  64. Ky B, Putt M, Sawaya H, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014; 63(8): 809–816.
  65. Witteles RM. Biomarkers as Predictors of Cardiac Toxicity From Targeted Cancer Therapies. J Card Fail. 2016; 22(6): 459–464.
  66. Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004; 109(22): 2749–2754.
  67. Feola M, Garrone O, Occelli M, et al. Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: effects on left ventricular ejection fraction, troponin I and brain natriuretic peptide. Int J Cardiol. 2011; 148(2): 194–198.
  68. Mackay B, Ewer MS, Carrasco CH, et al. Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastruct Pathol. 1994; 18(1-2): 203–211.
  69. Jones M, O'Gorman P, Kelly C, et al. High-sensitive cardiac troponin-I facilitates timely detection of subclinical anthracycline-mediated cardiac injury. Ann Clin Biochem. 2017; 54(1): 149–157.
  70. Skovgaard D, Hasbak P, Kjaer A. BNP predicts chemotherapy-related cardiotoxicity and death: comparison with gated equilibrium radionuclide ventriculography. PLoS One. 2014; 9(5): e96736.
  71. Romano S, Fratini S, Ricevuto E, et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br J Cancer. 2011; 105(11): 1663–1668.
  72. Zsáry A, Szücs S, Keltai K, et al. Endothelin-1 and cardiac function in anthracycline-treated patients: a 1-year follow-up. J Cardiovasc Pharmacol. 2004; 44 Suppl 1: S372–S375.
  73. Zsáry A, Szücs S, Schneider T, et al. Role of endothelin-1 in the development of a special type of cardiomyopathy. Clin Sci (Lond). 2002; 103 Suppl 48: 272S–275S.