dostęp otwarty

Tom 14, Nr 1 (2017)
Z pogranicza kardiologii
Opublikowany online: 2017-06-29
Pobierz cytowanie

Autoimmunizacyjne choroby tarczycy jako czynnik ryzyka chorób układu sercowo-naczyniowego

Małgorzata Tomczyńska, Ireneusz Salata, Joanna Saluk
Choroby Serca i Naczyń 2017;14(1):30-38.

dostęp otwarty

Tom 14, Nr 1 (2017)
Z pogranicza kardiologii
Opublikowany online: 2017-06-29

Streszczenie

W badaniach epidemiologicznych wskazuje się, że ważnym czynnikiem patogenezy chorób układu sercowo-naczyniowego jest toczący się proces autoimmunizacyjny. Zwiększone ryzyko występowania chorób układu krążenia obserwuje się między innymi u osób z autoim­munizacyjnymi chorobami tarczycy, co wynika zarówno z zaburzeń hormonalnych, jak i z cytotoksycznego działania autoprzeciwciał, autoreaktywnych limfocytów i mediatorów prozapalnych. Autoimmunizacyjne choroby tarczycy to: choroba Gravesa-Basedowa, odpowiedzialna za nadczynność tarczycy, oraz przewlekłe limfocytarne zapalenie tarczycy typu Hashimoto związane z niedoczynnością tego gruczołu. Wyniki wielu badań wskazują, że nawet stosunkowo nieduże wahania stężenia hormonów tarczycy oddziałują na czynność mięśnia sercowego oraz prowadzą do zmian patologicznych w układzie sercowo-naczyniowym. Pojawienie się jednej choroby z autoagresji zwiększa ryzyko równoległego wystąpienia innej o tym samym podłożu lub wtórnie rozwijającej się na skutek zaburzenia pracy innych układów i narządów, w tym układu sercowo-naczyniowego. W badaniach wykazano, że proces autoimmunizacji i związany z nim przewlekły stan zapalny determinują zaburzenia czynności mięśnia sercowego.

Streszczenie

W badaniach epidemiologicznych wskazuje się, że ważnym czynnikiem patogenezy chorób układu sercowo-naczyniowego jest toczący się proces autoimmunizacyjny. Zwiększone ryzyko występowania chorób układu krążenia obserwuje się między innymi u osób z autoim­munizacyjnymi chorobami tarczycy, co wynika zarówno z zaburzeń hormonalnych, jak i z cytotoksycznego działania autoprzeciwciał, autoreaktywnych limfocytów i mediatorów prozapalnych. Autoimmunizacyjne choroby tarczycy to: choroba Gravesa-Basedowa, odpowiedzialna za nadczynność tarczycy, oraz przewlekłe limfocytarne zapalenie tarczycy typu Hashimoto związane z niedoczynnością tego gruczołu. Wyniki wielu badań wskazują, że nawet stosunkowo nieduże wahania stężenia hormonów tarczycy oddziałują na czynność mięśnia sercowego oraz prowadzą do zmian patologicznych w układzie sercowo-naczyniowym. Pojawienie się jednej choroby z autoagresji zwiększa ryzyko równoległego wystąpienia innej o tym samym podłożu lub wtórnie rozwijającej się na skutek zaburzenia pracy innych układów i narządów, w tym układu sercowo-naczyniowego. W badaniach wykazano, że proces autoimmunizacji i związany z nim przewlekły stan zapalny determinują zaburzenia czynności mięśnia sercowego.

Pobierz cytowanie

Słowa kluczowe

autoimmunizacyjne choroby tarczycy, choroba Hashimoto, choroba Gravesa-Basedowa, zaburzenia układu sercowo-naczyniowego, hormony tarczycy, przeciwciała przeciwtarczycowe, stan zapalny

Informacje o artykule
Tytuł

Autoimmunizacyjne choroby tarczycy jako czynnik ryzyka chorób układu sercowo-naczyniowego

Czasopismo

Choroby Serca i Naczyń

Numer

Tom 14, Nr 1 (2017)

Strony

30-38

Data publikacji on-line

2017-06-29

Rekord bibliograficzny

Choroby Serca i Naczyń 2017;14(1):30-38.

Słowa kluczowe

autoimmunizacyjne choroby tarczycy
choroba Hashimoto
choroba Gravesa-Basedowa
zaburzenia układu sercowo-naczyniowego
hormony tarczycy
przeciwciała przeciwtarczycowe
stan zapalny

Autorzy

Małgorzata Tomczyńska
Ireneusz Salata
Joanna Saluk

Referencje (78)
  1. Raport WHO. 2005, Internet: Preventing Chronic Diseases. A Vital Investment, http://www.who.int/chp/chronic_disease_report/full_report. pdf, (accessed: 5 June. ; 2014.
  2. Mozaffarian D, Fahimi S, Singh GM, et al. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014; 371(7): 624–634.
  3. Zöller B, Li X, Sundquist J, et al. Risk of subsequent coronary heart disease in patients hospitalized for immune-mediated diseases: a nationwide follow-up study from Sweden. PLoS One. 2012; 7(3): e33442.
  4. Shoenfeld Y, Gerli R, Doria A, et al. Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation. 2005; 112(21): 3337–3347.
  5. Guilherme L, Kalil J. Rheumatic fever: the T cell response leading to autoimmune aggression in the heart. Autoimmun Rev. 2002; 1(5): 261–266.
  6. Kotb M. Infection and autoimmunity: a story of the host, the pathogen, and the copathogen. Clin Immunol Immunopathol. 1995; 74(1): 10–22.
  7. Korzeniowska-Kowal A, Witkowska D, Gamian A. Mimikra cząsteczkowa bakteryjnych antygenów polisacharydowych i jej rola w etiologii chorób infekcyjnych i autoimmunologicznych. Postępy Hig Med Dośw. 2001; 55: 211–232.
  8. Sfriso P, Ghirardello A, Botsios C, et al. Infections and autoimmunity: the multifaceted relationship. J Leukoc Biol. 2010; 87(3): 385–395.
  9. Whitacre C. Nature Immunology. 2001; 2(9): 777–780.
  10. McCoy L, Tsunoda I, Fujinami RS. Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity. 2006; 39(1): 9–19.
  11. Söderberg-Nauclér C. Autoimmunity induced by human cytomegalovirus in patients with systemic lupus erythematosus. Arthritis Res Ther. 2012; 14(1): 101.
  12. Iddah MA, Macharia BN. Autoimmune thyroid disorders. ISRN Endocrinol. 2013; 2013: 509764.
  13. Sawicka-Gutaj N, Zybek-Kocik A, Klimowicz A, et al. Circulating Visfatin in Hypothyroidism Is Associated with Free Thyroid Hormones and Antithyroperoxidase Antibodies. Int J Endocrinol. 2016; 2016: 7402469.
  14. Faber J, Selmer C. Cardiovascular Disease and Thyroid Function. W: Granata R., Isgaard J. red. Cardiovascular Issues in Endocrinology. Front Horm Res. Basel, Karger. ; 2014: 45–56.
  15. Iqbal A, Jorde R, Figenschau Y. Serum lipid levels in relation to serum thyroid-stimulating hormone and the effect of thyroxine treatment on serum lipid levels in subjects with subclinical hypothyroidism: the Tromsø Study. J Intern Med. 2006; 260(1): 53–61.
  16. Fater-Dębska A, Gworys P, Brzeziński J, et al. Zaburzenia tyreometaboliczne a niewydolność serca. Endokrynologia Polska. 2007; 58: 228–235.
  17. Iervasi G, Nicolini G. Thyroid hormone and cardiovascular system: from basic concepts to clinical application. Intern Emerg Med. 2013; 8 Suppl 1: S71–S74.
  18. Cini G, Carpi A, Mechanick J, et al. Thyroid hormones and the cardiovascular system: pathophysiology and interventions. Biomed Pharmacother. 2009; 63(10): 742–753.
  19. Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014; 13(4-5): 391–397.
  20. Faber J, Selmer C. Cardiovascular disease and thyroid function. Front Horm Res. 2014; 43: 45–56.
  21. Choi YH, Chung JH, Bae SW, et al. Severe coronary artery spasm can be associated with hyperthyroidism. Coron Artery Dis. 2005; 16(3): 135–139.
  22. Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007; 116(15): 1725–1735.
  23. Biondi B, Palmieri EA, Lombardi G, et al. Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab. 2002; 87(3): 968–974.
  24. Renaudon B, Lenfant J, Decressac S, et al. Thyroid hormone increases the conductance density of f-channels in rabbit sino-atrial node cells. Receptors Channels. 2000; 7(1): 1–8.
  25. Wang YG, Dedkova EN, Fiening JP, et al. Acute exposure to thyroid hormone increases Na+ current and intracellular Ca2+ in cat atrial myocytes. J Physiol. 2003; 546(Pt 2): 491–499.
  26. Li H, Murphy T, Zhang L, et al. β1-Adrenergic and M2 Muscarinic Autoantibodies and Thyroid Hormone Facilitate Induction of Atrial Fibrillation in Male Rabbits. Endocrinology. 2016; 157(1): 16–22.
  27. Sabah KM, Chowdhury AW, Islam MS, et al. Graves' disease presenting as bi-ventricular heart failure with severe pulmonary hypertension and pre-eclampsia in pregnancy--a case report and review of the literature. BMC Res Notes. 2014; 7: 814.
  28. Hu LW, Benvenuti LA, Liberti EA, et al. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol. 2003; 285(6): R1473–R1480.
  29. Barreto-Chaves ML, de Souza Monteiro P, Fürstenau CR. Acute actions of thyroid hormone on blood vessel biochemistry and physiology. Curr Opin Endocrinol Diabetes Obes. 2011; 18(5): 300–303.
  30. Patrick L. Thyroid disruption: mechanism and clinical implications in human health. Altern Med Rev. 2009; 14(4): 326–346.
  31. Ionescu SD, Tănase DM, Ouatu A, et al. Massive pericardial effusion associated with hypothyroidism. Rev Med Chir Soc Med Nat Iasi. 2014; 118(1): 87–91.
  32. Passeri E, Frigerio M, De Filippis T, et al. Increased risk for non-autoimmune hypothyroidism in young patients with congenital heart defects. J Clin Endocrinol Metab. 2011; 96(7): E1115–E1119.
  33. Blasi C. The autoimmune origin of atherosclerosis. Atherosclerosis. 2008; 201(1): 17–32.
  34. Packard R, Lichtman A, Libby P. Innate and adaptive immunity in atherosclerosis. Seminars in Immunopathology. 2009; 31(1): 5–22.
  35. Jara LJ, Medina G, Vera-Lastra O, et al. Accelerated atherosclerosis, immune response and autoimmune rheumatic diseases. Autoimmun Rev. 2006; 5(3): 195–201.
  36. Kahlenberg JM, Kaplan MJ. Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus. Annu Rev Med. 2013; 64: 249–263.
  37. Solomon A, Norton GR, Woodiwiss AJ, et al. Obesity and carotid atherosclerosis in African black and Caucasian women with established rheumatoid arthritis: a cross-sectional study. Arthritis Res Ther. 2012; 14(2): R67.
  38. Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013; 339(6116): 161–166.
  39. Scotece M, Conde J, Gómez R, et al. Role of adipokines in atherosclerosis: interferences with cardiovascular complications in rheumatic diseases. Mediators Inflamm. 2012; 2012: 125458.
  40. Profumo E, Di Franco M, Buttari B, et al. Biomarkers of subclinical atherosclerosis in patients with autoimmune disorders. Mediators Inflamm. 2012; 2012: 503942.
  41. Wade NS, Major AS. The problem of accelerated atherosclerosis in systemic lupus erythematosus: insights into a complex co-morbidity. Thromb Haemost. 2011; 106(5): 849–857.
  42. Messner B, Knoflach M, Seubert A, et al. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol. 2004; 22(9): 361–403.
  43. Matsuura E. Atherosclerosis and Autoimmunity. Clinical Reviews in Allergy & Immunology. 2008; 37(1): 1–3.
  44. Del Rincón I, O'Leary DH, Freeman GL, et al. Acceleration of atherosclerosis during the course of rheumatoid arthritis. Atherosclerosis. 2007; 195(2): 354–360.
  45. Gordon PA, George J, Khamashta MA, et al. Atherosclerosis and autoimmunity. Lupus. 2001; 10(4): 249–252.
  46. Sherer Y, Shoenfeld Y. Mechanisms of disease: atherosclerosis in autoimmune diseases. Nat Clin Pract Rheumatol. 2006; 2(2): 99–106.
  47. Frostegård J. Atherosclerosis in patients with autoimmune disorders. Arterioscler Thromb Vasc Biol. 2005; 25(9): 1776–1785.
  48. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005; 352(16): 1685–1695.
  49. Kim SH, Lee CK, Lee EY, et al. Serum oxidized low-density lipoproteins in rheumatoid arthritis. Rheumatol Int. 2004; 24(4): 230–233.
  50. López-Mejías R, Genre F, González-Juanatey C, et al. Autoantibodies and biomarkers of endothelial cell activation in atherosclerosis. Vasa. 2014; 43(2): 83–85.
  51. Sayols-Baixeras S, Lluís-Ganella C, Lucas G, et al. Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet. 2014; 7: 15–32.
  52. Epstein F, Ross R. Atherosclerosis — An Inflammatory Disease. New England Journal of Medicine. 1999; 340(2): 115–126.
  53. López-Pedrera C, Pérez-Sánchez C, Ramos-Casals M, et al. Cardiovascular risk in systemic autoimmune diseases: epigenetic mechanisms of immune regulatory functions. Clin Dev Immunol. 2012; 2012: 974648.
  54. Ferencík M, Stvrtinová V, Hulín I. Defects in regulation of local immune responses resulting in atherosclerosis. Clin Dev Immunol. 2005; 12(3): 225–234.
  55. Emeson EE, Shen ML, Bell CG, et al. Inhibition of atherosclerosis in CD4 T-cell-ablated and nude (nu/nu) C57BL/6 hyperlipidemic mice. Am J Pathol. 1996; 149(2): 675–685.
  56. García-Bermúdez M, González-Juanatey C, López-Mejías R, et al. Study of association of CD40-CD154 gene polymorphisms with disease susceptibility and cardiovascular risk in Spanish rheumatoid arthritis patients. PLoS One. 2012; 7(11): e49214.
  57. Guiducci S, Giacomelli R, Cerinic MM. Vascular complications of scleroderma. Autoimmun Rev. 2007; 6(8): 520–523.
  58. Guiducci S, Distler O, Distler J, et al. Mechanisms of vascular damage in SSc--implications for vascular treatment strategies. Rheumatology. 2008; 47(Supplement 5): v18–v20.
  59. Weiss B, Segesser Lv, Alon E, et al. Outcome of cardiovascular surgery and pregnancy: A systematic review of the period 1984-1996. American Journal of Obstetrics and Gynecology. 1998; 179(6): 1643–1653.
  60. Berg CJ, Callaghan WM, Syverson C, et al. Pregnancy-related mortality in the United States, 1998 to 2005. Obstet Gynecol. 2010; 116(6): 1302–1309.
  61. Prisant LM, Gujral JS, Mulloy AL. Hyperthyroidism: a secondary cause of isolated systolic hypertension. J Clin Hypertens (Greenwich). 2006; 8(8): 596–599.
  62. Palmieri EA, Fazio S, Palmieri V, et al. Myocardial contractility and total arterial stiffness in patients with overt hyperthyroidism: acute effects of beta1-adrenergic blockade. Eur J Endocrinol. 2004; 150(6): 757–762.
  63. Biondi B, Palmieri EA, Lombardi G, et al. Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab. 2002; 87(3): 968–974.
  64. Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007; 116(15): 1725–1735.
  65. Forfar JC, Muir AL, Sawers SA, et al. Abnormal left ventricular function in hyperthyroidism: evidence for a possible reversible cardiomyopathy. N Engl J Med. 1982; 307(19): 1165–1170.
  66. Gietka-Czernel M. Niedoczynność tarczycy a układ sercowo-naczyniowy. Postępy Nauk Medycznych. 2012; 11: 877–881.
  67. Taddei S, Caraccio N, Virdis A, et al. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab. 2003; 88(8): 3731–3737.
  68. Mayer O, Simon J, Filipovský J, et al. Hypothyroidism in coronary heart disease and its relation to selected risk factors. Vasc Health Risk Manag. 2006; 2(4): 499–506.
  69. Hegde VA, Vivas Y, Shah H, et al. Cardiovascular surgical outcomes in patients with the antiphospholipid syndrome--a case-series. Heart Lung Circ. 2007; 16(6): 423–427.
  70. Im SH, Oh CW, Kwon OK, et al. Moyamoya disease associated with Graves disease: special considerations regarding clinical significance and management. J Neurosurg. 2005; 102(6): 1013–1017.
  71. Kim SJ, Heo KGi, Shin HY, et al. Association of thyroid autoantibodies with moyamoya-type cerebrovascular disease: a prospective study. Stroke. 2010; 41(1): 173–176.
  72. Zhang X, Chen Z, Shi Z, et al. Correlation between thyroid autoantibodies and intracranial arterial stenosis in stroke patients with hyperthyroidism. J Neurol Sci. 2012; 318(1-2): 82–84.
  73. Selmer C, Olesen JB, Hansen ML, et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: a large population cohort study. BMJ. 2012; 345: e7895.
  74. Cappola AR, Fried LP, Arnold AM, et al. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA. 2006; 295(9): 1033–1041.
  75. Li H, Scherlag BJ, Kem DC, et al. Inducible cardiac arrhythmias caused by enhanced β1-adrenergic autoantibody expression in the rabbit. Am J Physiol Heart Circ Physiol. 2014; 306(3): H422–H428.
  76. Li H, Scherlag BJ, Kem DC, et al. Atrial tachyarrhythmias induced by the combined effects of β1/2-adrenergic autoantibodies and thyroid hormone in the rabbit. J Cardiovasc Transl Res. 2014; 7(6): 581–589.
  77. Li H, Scherlag BJ, Kem DC, et al. Atrial tachycardia provoked in the presence of activating autoantibodies to β2-adrenergic receptor in the rabbit. Heart Rhythm. 2013; 10(3): 436–441.
  78. Yu Z, Huang CX, Wang SY, et al. Thyroid hormone predisposes rabbits to atrial arrhythmias by shortening monophasic action period and effective refractory period: results from an in vivo study. J Endocrinol Invest. 2009; 32(3): 253–257.

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k. ul. Świętokrzyska 73, 80–180 Gdańsk

tel.: +48 58 320 94 94, faks:+48 58 320 94 60,  e-mail: viamedica@viamedica.pl