open access

Vol 26, No 2 (2022)
Review paper
Published online: 2022-05-30
Get Citation

Effect of sodium-glucose co-transporter inhibitors on blood pressure values. A new class of diuretic drugs?

Jerzy Głuszek1, Teresa Kosicka2
·
Arterial Hypertension 2022;26(2):60-66.
Affiliations
  1. Calisia University, Kalisz, Poland
  2. Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland

open access

Vol 26, No 2 (2022)
REVIEW
Published online: 2022-05-30

Abstract

New sodium-glucose co-transporter (SGLT 2) inhibitors are already widely used in patients with diabetes mellitus and in patients with heart failure. From the beginning of their use, it has been noticed that they slightly but statistically significantly lower both systolic blood pressure (SBP) and diastolic blood pressure (DBP). The antidiabetic activity of these drugs is based on the inhibition of the reabsorption of glucose and partially sodium in the renal tubules, which leads to an increase in the amount of urine excreted.

Most likely, increased diuresis is responsible for the drop in blood pressure (BP). So far, numerous meta-analyses confirming the reduction of BP in diabetic patients have already been published, for both office BP and home BP, twenty-four hour BP and ambulatory central blood pressure. The action of SGLT 2 inhibitors, after a single administration, extends over 24 hours and there are already the first successful attempts to use them in hypertension in the course of diabetes mellitus with obstructive sleep apnea.

The action of SGLT 2 inhibitors is pleiotropic and, apart from the diuretic effect, they slightly reduce the patient’s weight, reduce the activity of the sympathetic nervous system, restore the normal function of the endothelium, increase uric acid excretion, and reduce blood vessel stiffness. All these factors are responsible for the drop in BP.

These favorable properties of SGLT 2 inhibitors indicate that these drugs will be increasingly used, probably not only in diabetes.

Abstract

New sodium-glucose co-transporter (SGLT 2) inhibitors are already widely used in patients with diabetes mellitus and in patients with heart failure. From the beginning of their use, it has been noticed that they slightly but statistically significantly lower both systolic blood pressure (SBP) and diastolic blood pressure (DBP). The antidiabetic activity of these drugs is based on the inhibition of the reabsorption of glucose and partially sodium in the renal tubules, which leads to an increase in the amount of urine excreted.

Most likely, increased diuresis is responsible for the drop in blood pressure (BP). So far, numerous meta-analyses confirming the reduction of BP in diabetic patients have already been published, for both office BP and home BP, twenty-four hour BP and ambulatory central blood pressure. The action of SGLT 2 inhibitors, after a single administration, extends over 24 hours and there are already the first successful attempts to use them in hypertension in the course of diabetes mellitus with obstructive sleep apnea.

The action of SGLT 2 inhibitors is pleiotropic and, apart from the diuretic effect, they slightly reduce the patient’s weight, reduce the activity of the sympathetic nervous system, restore the normal function of the endothelium, increase uric acid excretion, and reduce blood vessel stiffness. All these factors are responsible for the drop in BP.

These favorable properties of SGLT 2 inhibitors indicate that these drugs will be increasingly used, probably not only in diabetes.

Get Citation

Keywords

SGLT2 inhibitors; blood pressure; blood vessel stiffness; activity of the sympathetic nervous system; endothelium

About this article
Title

Effect of sodium-glucose co-transporter inhibitors on blood pressure values. A new class of diuretic drugs?

Journal

Arterial Hypertension

Issue

Vol 26, No 2 (2022)

Article type

Review paper

Pages

60-66

Published online

2022-05-30

Page views

4325

Article views/downloads

717

DOI

10.5603/AH.a2022.0010

Bibliographic record

Arterial Hypertension 2022;26(2):60-66.

Keywords

SGLT2 inhibitors
blood pressure
blood vessel stiffness
activity of the sympathetic nervous system
endothelium

Authors

Jerzy Głuszek
Teresa Kosicka

References (52)
  1. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005; 365(9455): 217–223.
  2. Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380(9859): 2224–2260.
  3. Sarafidis PA, Georgianos P, Bakris GL. Resistant hypertension--its identification and epidemiology. Nat Rev Nephrol. 2013; 9(1): 51–58.
  4. Zinman B, Wanner C, Lachin JM, et al. EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015; 373(22): 2117–2128.
  5. Packer M, Butler J, Filippatos G, et al. EMPEROR Trial Committees and Investigators. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020; 396(10254): 819–829.
  6. Arnott C, Li Q, Kang A, et al. Sodium-Glucose Cotransporter 2 Inhibition for the Prevention of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2020; 9(3): e014908.
  7. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021; 385(16): 1451–1461.
  8. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018; 61(10): 2108–2117.
  9. Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018; 20(3): 479–487.
  10. Bauersachs J. Heart failure drug treatment: the fantastic four. Eur Heart J. 2021; 42(6): 681–683.
  11. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013; 159(4): 262–274.
  12. Mazidi M, Rezaie P, Gao HK, et al. Effect of Sodium-Glucose Cotransport-2 Inhibitors on Blood Pressure in People With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of 43 Randomized Control Trials With 22 528 Patients. J Am Heart Assoc. 2017; 6(6).
  13. Baker WL, Buckley LF, Kelly MS, et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on 24-Hour Ambulatory Blood Pressure: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2017; 6(5).
  14. Zanchi A, Burnier M, Muller ME, et al. Acute and Chronic Effects of SGLT2 Inhibitor Empagliflozin on Renal Oxygenation and Blood Pressure Control in Nondiabetic Normotensive Subjects: A Randomized, Placebo-Controlled Trial. J Am Heart Assoc. 2020; 9(13): e016173.
  15. Khan MS, Usman MS, Siddiqi TJ, et al. Effect of canagliflozin use on body weight and blood pressure at one-year follow-up: A systematic review and meta-analysis. Eur J Prev Cardiol. 2019; 26(15): 1680–1682.
  16. Georgianos PI, Agarwal R. Ambulatory Blood Pressure Reduction With SGLT-2 Inhibitors: Dose-Response Meta-analysis and Comparative Evaluation With Low-Dose Hydrochlorothiazide. Diabetes Care. 2019; 42(4): 693–700.
  17. Kario K, Okada K, Kato M, et al. 24-Hour Blood Pressure-Lowering Effect of an SGLT-2 Inhibitor in Patients with Diabetes and Uncontrolled Nocturnal Hypertension: Results from the Randomized, Placebo-Controlled SACRA Study. Circulation. 2018 [Epub ahead of print].
  18. Kario K, Hoshide S, Okawara Y, et al. Effect of canagliflozin on nocturnal home blood pressure in Japanese patients with type 2 diabetes mellitus: The SHIFT-J study. J Clin Hypertens (Greenwich). 2018; 20(10): 1527–1535.
  19. Tillin T, Hughes AD, Mayet J, et al. The relationship between metabolic risk factors and incident cardiovascular disease in Europeans, South Asians, and African Caribbeans: SABRE (Southall and Brent Revisited) -- a prospective population-based study. J Am Coll Cardiol. 2013; 61(17): 1777–1786.
  20. Kario K, Ferdinand KC, O'Keefe JH. Control of 24-hour blood pressure with SGLT2 inhibitors to prevent cardiovascular disease. Prog Cardiovasc Dis. 2020; 63(3): 249–262.
  21. Foster GD, Sanders MH, Millman R, et al. Sleep AHEAD Research Group. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009; 32(6): 1017–1019.
  22. Sawada K, Karashima S, Kometani M, et al. Effect of sodium glucose cotransporter 2 inhibitors on obstructive sleep apnea in patients with type 2 diabetes. Endocr J. 2018; 65(4): 461–467.
  23. List JF, Woo V, Morales E, et al. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009; 32(4): 650–657.
  24. Wan N, Fujisawa Y, Kobara H, et al. Effects of an SGLT2 inhibitor on the salt sensitivity of blood pressure and sympathetic nerve activity in a nondiabetic rat model of chronic kidney disease. Hypertens Res. 2020; 43(6): 492–499.
  25. Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014; 35(7): 391–404.
  26. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008; 300(8): 924–932.
  27. Chakraborty S, Galla S, Cheng Xi, et al. Salt-Responsive Metabolite, β-Hydroxybutyrate, Attenuates Hypertension. Cell Rep. 2018; 25(3): 677–689.e4.
  28. Katakami N, Mita T, Yoshii H, et al. UTOPIA study investigators. Effect of tofogliflozin on arterial stiffness in patients with type 2 diabetes: prespecified sub-analysis of the prospective, randomized, open-label, parallel-group comparative UTOPIA trial. Cardiovasc Diabetol. 2021; 20(1): 4.
  29. Kario K, Okada K, Murata M, et al. Effects of luseogliflozin on arterial properties in patients with type 2 diabetes mellitus: The multicenter, exploratory LUSCAR study. J Clin Hypertens (Greenwich). 2020; 22(9): 1585–1593.
  30. Patoulias D, Papadopoulos C, Stavropoulos K, et al. Prognosic value of arterial stiffines measurements in cardiovasculare diseae, diabetes, and its complicatios: The potential role of sodium -glucose co-transporter-2 inhibitors. J Clin Hypertens. 2020; 22(4): 562–571.
  31. Eirini P, Charalampos L, Glykeria T. Dapagliflozin decreases ambulatory central blood presure and pulse velocity in patients with type 2 diabetes: randimized, double-blind, placebo-controlled clinical trial. J Hypertension. 2021; 39(4): 749–758.
  32. Stiepe K, Juar A, Ott C, et al. Effects of the selective sodium-glucoseotransporter 2 inhibitor empagliflozin io vascular function and central hemodynamics in patients with type 2 dibetes mellitus. Circulation. 2017; 136(12): 1167–1169.
  33. Scheen AJ. Effect of SGLT2 Inhibitors on the Sympathetic Nervous System and Blood Pressure. Curr Cardiol Rep. 2019; 21(8): 70.
  34. Sano M. Hemodynamic Effects of Sodium-Glucose Cotransporter 2 Inhibitors. J Clin Med Res. 2017; 9(6): 457–460.
  35. Matthevs VB, Elliot RH, Rudnicka C, et al. Role the sympthetic nervous system in regulation of the sodium glucose cotrasporer 2. J Hypertens. 2017; 35: 2059–2066.
  36. Nguyen T, Wen S, Gong M, et al. Dapagliflozin Activates Neurons in the Central Nervous System and Regulates Cardiovascular Activity by Inhibiting SGLT-2 in Mice. Diabetes Metab Syndr Obes. 2020; 13: 2781–2799.
  37. Wan N, Rahman A, Hitomi H, et al. The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Sympathetic Nervous Activity. Front Endocrinol (Lausanne). 2018; 9: 421.
  38. Jordan J, Tank J, Heusser K, et al. The effect of empagliflozin on muscle sympathetic nerve activity in patients with type II diabetes mellitus. J Am Soc Hypertens. 2017; 11(9): 604–612.
  39. Kandzari DE, Böhm M, Mahfoud F, et al. SPYRAL HTN-ON MED Trial Investigators. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018; 391(10137): 2346–2355.
  40. Salvatore T, Caturano A, Galiero R, et al. Cardiovascular Benefits from Gliflozins: Effects on Endothelial Function. Biomedicines. 2021; 9(10).
  41. Gaspari T, Spizzo I, Liu H, et al. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: A potential mechanism for inhibition of atherogenesis. Diab Vasc Dis Res. 2018; 15(1): 64–73.
  42. Li H, Shin SE, Seo MiS, et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci. 2018; 197: 46–55.
  43. Seo MiS, Jung HS, An JR, et al. Empagliflozin dilates the rabbit aorta by activating PKG and voltage-dependent K channels. Toxicol Appl Pharmacol. 2020; 403: 115153.
  44. Solini A, Seghieri M, Giannini L, et al. The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature. J Clin Endocrinol Metab. 2019; 104(10): 4253–4263.
  45. Sposito AC, Breder I, Soares AAS, et al. ADDENDA-BHS2 trial investigators. Dapagliflozin effect on endothelial dysfunction in diabetic patients with atherosclerotic disease: a randomized active-controlled trial. Cardiovasc Diabetol. 2021; 20(1): 74.
  46. Cherney DZi, Perkins BA, Soleymanlou N, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014; 13: 28.
  47. Park SH, Belcastro E, Hasan H, et al. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: protective effect of gliflozins. Cardiovasc Diabetol. 2021; 20(1): 65.
  48. Reed JW. Impact of sodium-glucose cotransporter 1 inhibitors on blood pressure. Health Risk Manag. 2016; 12: 393–405.
  49. Neal B, Perkovic V, Mahaffey KW, et al. CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017; 377(7): 644–657.
  50. Filippas-Ntekouan S, Filippatos T, Elisaf M. SGLT2 inhibitors: are they safe? Postgrad Med. 2017; 130(1): 72–82.
  51. Benham J, Booth J, Sigal R, et al. Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes. IJC Heart & Vasculature. 2021; 33: 100725.
  52. Böhm M, Anker SD, Butler J, et al. EMPEROR-Reduced Trial Committees and Investigators. Empagliflozin Improves Cardiovascular and Renal Outcomes in Heart Failure Irrespective of Systolic Blood Pressure. J Am Coll Cardiol. 2021; 78(13): 1337–1348.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl