open access

Vol 27, No 3 (2023)
Review paper
Published online: 2023-09-11
Get Citation

Oxidatively modified protein products and lipid peroxidation products in hypertensive patients

Ada Kaczmarek1, Kamila Sieradocha1, Mariusz Dotka1, Wiktoria Jedlikowska1, Natalia Strzyżewska1, Beata Begier-Krasińska2, Bogna Gryszczyńska3
·
Arterial Hypertension 2023;27(3):133-144.
Affiliations
  1. Faculty of Medicine, Poznan University of Medical Sciences, Poland
  2. Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poland
  3. Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Poland

open access

Vol 27, No 3 (2023)
REVIEW
Published online: 2023-09-11

Abstract

Oxidative stress is considered to be one of the key factors responsible for the development of this disease. It has been proven that the increased production of free radicals and reactive oxygen species, and thus the decreased antioxidant activity of the organism, can lead to the oxidative modification of biomolecules important for the organism, including proteins and lipids. The imbalance between pro and antioxidant factors may have a direct impact on the development and course of cardiovascular diseases, including arterial hypertension. This thesis presents the most important information about the oxidative stress and the etiology of arterial hypertension, characterizes various types of products of oxidative modification of proteins and lipid peroxidation, and presents the results of research confirming the significant role of oxidative stress in the development of this disease.

Abstract

Oxidative stress is considered to be one of the key factors responsible for the development of this disease. It has been proven that the increased production of free radicals and reactive oxygen species, and thus the decreased antioxidant activity of the organism, can lead to the oxidative modification of biomolecules important for the organism, including proteins and lipids. The imbalance between pro and antioxidant factors may have a direct impact on the development and course of cardiovascular diseases, including arterial hypertension. This thesis presents the most important information about the oxidative stress and the etiology of arterial hypertension, characterizes various types of products of oxidative modification of proteins and lipid peroxidation, and presents the results of research confirming the significant role of oxidative stress in the development of this disease.

Get Citation

Keywords

hypertension; biomarkers of oxidative stress; oxidatively modified proteins; lipid peroxidation products; antioxidants

About this article
Title

Oxidatively modified protein products and lipid peroxidation products in hypertensive patients

Journal

Arterial Hypertension

Issue

Vol 27, No 3 (2023)

Article type

Review paper

Pages

133-144

Published online

2023-09-11

Page views

322

Article views/downloads

298

DOI

10.5603/ah.95806

Bibliographic record

Arterial Hypertension 2023;27(3):133-144.

Keywords

hypertension
biomarkers of oxidative stress
oxidatively modified proteins
lipid peroxidation products
antioxidants

Authors

Ada Kaczmarek
Kamila Sieradocha
Mariusz Dotka
Wiktoria Jedlikowska
Natalia Strzyżewska
Beata Begier-Krasińska
Bogna Gryszczyńska

References (57)
  1. Knaś M, Maciejczyk M, Waszkiel D, et al. Oxidative stress and salivary antioxidants. Dent Med Probl. 2013; 50(4): 461–466.
  2. Gdula-Argasińska J, Tyszka-Czochara M, Paśko P, et al. Rola wolnych rodników w regu-lacji procesów fizjologicznych. Med Int Rev. 2012; 25(99): 41–46.
  3. Karolkiewicz J. Wpływ stresu oksydacyjnego na strukturę i funkcję komórek oraz konse-kwencje wynikające z uszkodzeń wolnorodnikowych — związek z procesami starzenia. Gerontol Pol. 2011; 19(2): 59–67.
  4. Pizzino G, Irrera N, Cucinotta M, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017; 2017: 8416763.
  5. Ho E, Karimi Galougahi K, Liu CC, et al. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol. 2013; 1(1): 483–491.
  6. Ognik K, Cholewińska E. Biomarkery wykorzystywane w ocenie oksydacyjnych uszkodzeń białek. Kosmos. 2018; 67(2): 347–359.
  7. Fernando N, Wickremesinghe S, Niloofa R, et al. Protein Carbonyl as a Biomarker of Oxidative Stress in Severe Leptospirosis, and Its Usefulness in Differentiating Leptospirosis from Dengue Infections. PLoS One. 2016; 11(6): e0156085.
  8. Whongsiri P, Phoyen S, Boonla C. Oxidative Stress in Urothelial Carcinogenesis: Measurements of Protein Carbonylation and Intracellular Production of Reactive Oxygen Species. Methods Mol Biol. 2018; 1655: 109–117.
  9. Bollineni RC, Fedorova M, Hoffmann R. Qualitative and quantitative evaluation of derivatization reagents for different types of protein-bound carbonyl groups. Analyst. 2013; 138(17): 5081–5088.
  10. Senatus LM, Schmidt AM. The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. Front Genet. 2017; 8: 187.
  11. Szutowicz A. Hyperglycation of extra and intracellular proteins; marker or active element of diabetic pathomechanisms. Diagn Lab. 2015; 51(3): 213–220.
  12. Nogajczyk A, Szumska M, Kumaszka B, et al. Metody oznaczania pentozydyny: pro-duktu zaawansowanej glikacji białek. Aparat Bad i Dydak. 2015; 20(3): 158–173.
  13. Kuzan A, Chwiłkowska A, Kobielarz M, et al. Glycation of extracellular matrix proteins and its role in atherosclerosis. Postępy Hig Med Dosw. 2012; 66: 804–809.
  14. Vasdev S, Gill VD, Singal PK. Modulation of oxidative stress-induced changes in hypertension and atherosclerosis by antioxidants. Exp Clin Cardiol. 2006; 11(3): 206–216.
  15. Zeng J, Davies MJ. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins. Chem Res Toxicol. 2005; 18(8): 1232–1241.
  16. Horiuchi S, Sakamoto Y, Sakai M. Scavenger receptors for oxidized and glycated proteins. Amino Acids. 2003; 25(3-4): 283–292.
  17. Colombo G, Clerici M, Giustarini D, et al. A central role for intermolecular dityrosine cross-linking of fibrinogen in high molecular weight advanced oxidation protein product (AOPP) formation. Biochim Biophys Acta. 2015; 1850(1): 1–12.
  18. Witko-Sarsat V, Gausson V, Nguyen AT, et al. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int. 2003; 64(1): 82–91.
  19. Conti G, Caccamo D, Siligato R, et al. Association of Higher Advanced Oxidation Protein Products (AOPPs) Levels in Patients with Diabetic and Hypertensive Nephropathy. Medicina (Kaunas). 2019; 55(10).
  20. Jawalekar SL, Kulkarni UJ, Surve V, et al. et al.. Status of lipid profile, MDA and pro-tein carbonyl in patients with cardiovascular diseases. Arch Appl Sci Res. 2010; 2(6): 8–14.
  21. Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017; 482(3): 419–425.
  22. Zielińska M, Rutkowska J, Antoniewska A. Produkty utleniania lipidów-konsekwencje żywieniowe i zdrowotne. Probl Hig Epidemiol. 2017; 98(3): 203–211.
  23. Jędrzejczak-Pospiech K, Błaszczyk J. Wpływ suplementacji luteiną na procesy perok-sydacji lipidów we krwi u ludzi zdrowych. Probl Hig Epidemiol. 2015; 96(3): 677–680.
  24. Qidwai W, Yeoh PN, Inem V, et al. Role of complementary and alternative medicine in cardiovascular diseases. Evid Based Complement Alternat Med. 2013; 2013: 142898.
  25. Gönenç A, Hacışevki A, Tavil Y, et al. Oxidative stress in patients with essential hypertension: a comparison of dippers and non-dippers. Eur J Intern Med. 2013; 24(2): 139–144.
  26. Hammed A, Jawad A, Saifullah P, et al. 4-Hydroxy-2-Nonenal, Indused Nitric Oxide Synthase Statues in Hypertension Patients. Al-Nahrain J Sci. 2017; 20(3): 6–11.
  27. Zhang H, Forman HJ. Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. Arch Biochem Biophys. 2017; 617: 145–154.
  28. Sousa T, Afonso J, Carvalho F, et al. Lipid Peroxidation and Antioxidants in Arterial Hypertension. Lipid Peroxid. 2012.
  29. Prado AF, Batista RIM, Tanus-Santos JE, et al. Matrix Metalloproteinases and Arterial Hypertension: Role of Oxidative Stress and Nitric Oxide in Vascular Functional and Structural Alterations. Biomolecules. 2021; 11(4).
  30. Mancia G, Fagard R. Guidelines for the management of hypertension and target organ damage: reply. J Hypertens. 2013; 31(12): 2464–2465.
  31. Oparil S, Acelajado MC, Bakris GL, et al. Hypertension. Nat Rev Dis Primers. 2018; 4: 18014.
  32. Skalska A. Wolne rodniki tlenowe a nadciśnienie tętnicze. Nadciśnienie Tętnicze. 2001; 5(2): 147–158.
  33. Rodrigo R, González J, Paoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res. 2011; 34(4): 431–440.
  34. Nakazono K, Watanabe N, Matsuno K, et al. Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A. 1991; 88(22): 10045–10048.
  35. Rodrigo R, Brito R, González J. Oxidative Stress and Essential Hypertension. Update Essent Hypertens. 2016.
  36. Touyz RM. Recent advances in intracellular signalling in hypertension. Curr Opin Nephrol Hypertens. 2003; 12(2): 165–174.
  37. Garibaldi S, Barisione C, Marengo B, et al. Advanced Oxidation Protein Products-Modified Albumin Induces Differentiation of RAW264.7 Macrophages into Dendritic-Like Cells Which Is Modulated by Cell Surface Thiols. Toxins (Basel). 2017; 9(1).
  38. Maciejczyk M, Taranta-Janusz K, Wasilewska A, et al. A Case-Control Study of Salivary Redox Homeostasis in Hypertensive Children. Can Salivary Uric Acid be a Marker of Hypertension? J Clin Med. 2020; 9(3).
  39. Skrypnik D, Pupek-Musialik D, Skrypnik K, et al. Nadciśnienie tętnicze u osób w podeszłym wieku — zasady postępowania. Forum Zaburzen Metab. 2015; 6(4): 137–151.
  40. Yavuzer S, Yavuzer H, Cengiz M, et al. The role of protein oxidation and DNA damage in elderly hypertension. Aging Clin Exp Res. 2016; 28(4): 625–632.
  41. Klisic A, Kavaric N, Vujcic S, et al. Endocan and advanced oxidation protein products in adult population with hypertension. Eur Rev Med Pharmacol Sci. 2020; 24(12): 7131–7137.
  42. Caner M, Karter Y, Uzun H, et al. Oxidative stress in human in sustained and white coat hypertension. Int J Clin Pract. 2006; 60(12): 1565–1571.
  43. Gryszczyńska B, Budzyń M, Begier-Krasińska B, et al. Association between Advanced Glycation End Products, Soluble RAGE Receptor, and Endothelium Dysfunction, Evaluated by Circulating Endothelial Cells and Endothelial Progenitor Cells in Patients with Mild and Resistant Hypertension. Int J Mol Sci. 2019; 20(16).
  44. Pilz S, Tomaschitz A, Ritz E, et al. Vitamin D status and arterial hypertension: a systematic review. Nat Rev Cardiol. 2009; 6(10): 621–630.
  45. Mitri J, Muraru MD, Pittas AG. Vitamin D and type 2 diabetes: a systematic review. Eur J Clin Nutr. 2011; 65(9): 1005–1015.
  46. Stürmer M, Šebeková K, Fazeli G, et al. 25-hydroxyvitamin d and advanced glycation endproducts in healthy and hypertensive subjects: are there interactions? J Ren Nutr. 2015; 25(2): 209–216.
  47. Vaziri ND, Oveisi F, Ding Y. Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int. 1998; 53(6): 1748–1754.
  48. Wawro A, Kiliś-Pstrusińska K, Medyńska A, et al. Stres oksydacyjny u dzieci i mło-dzieży z nadciśnieniem tętniczym pierwotnym. Pediatr Med Rodz. 2011; 7(1): 58–61.
  49. Jawad AH, Hammed A, Adil H, et al. Serum 4-Hydroxy-2-nonenal and Induced Nitric Oxide Synthase in Hypertension Patient. Orient J Phys Sci. 2017; 2(1): 29–33.
  50. Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014; 2014: 761264.
  51. Krasińska B, Osińska A, Krasińska A, et al. Favourable hypotensive effect after standardised tomato extract treatment in hypertensive subjects at high cardiovascular risk: a randomised controlled trial. Kardiol Pol. 2018; 76(2): 388–395.
  52. Krasinska B, Osińska A, Osinski M, et al. Standardised tomato extract as an alternative to acetylsalicylic acid in patients with primary hypertension and high cardiovascular risk - a randomised, controlled trial. Arch Med Sci. 2018; 14(4): 773–780.
  53. Baradaran A, Nasri H, Rafieian-Kopaei M. Oxidative stress and hypertension: Possibil-ity of hypertension therapy with antioxidants. J Res Med Sci. 2014; 19(4): 358.
  54. Hsu CN, Tain YL. Early Origins of Hypertension: Should Prevention Start Before Birth Using Natural Antioxidants? Antioxidants (Basel). 2020; 9(11).
  55. Lerman LO, Nath KA, Rodriguez-Porcel M, et al. Increased oxidative stress in experimental renovascular hypertension. Hypertension. 2001; 37(2 Pt 2): 541–546.
  56. Fatouros IG, Douroudos I, Panagoutsos S, et al. Effects of L-carnitine on oxidative stress responses in patients with renal disease. Med Sci Sports Exerc. 2010; 42(10): 1809–1818.
  57. Roozbeh J, Shahriyari B, Akmali M, et al. Comparative effects of silymarin and vitamin E supplementation on oxidative stress markers, and hemoglobin levels among patients on hemodialysis. Ren Fail. 2011; 33(2): 118–123.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl