Vol 15, No 2 (2011)
Review paper
Published online: 2011-05-26

open access

Page views 1281
Article views/downloads 7189
Get Citation

Connect on Social Media

Connect on Social Media

Influence of genetic factors on early hypertensive complications

Katarzyna Polonis, Michał Hoffmann, Krzysztof Narkiewicz
Nadciśnienie tętnicze 2011;15(2):125-142.

Abstract

Hypertension is the most prevalent risk factor for cardiovascular disease (CVD), the leading cause of death worldwide, especially in developed countries. Genetic and environmental determinants play important roles in hypertension and its complications. This publication gives a short introduction to the pathogenesis of CVD and summarizes the current findings of the genetic factors involved. This review focuses on a better understanding of the role of candidate genes polymorphisms that play a crucial role in blood pressure regulation, hemostatic processes, oxidative stress and inflammatory responses leading to endothelial damage, and as a result, to vascular remodeling and microalbuminuria. Those gene variants could contribute to inter-individual differences in susceptibility to and outcome of essential hypertension. Therefore, the major challenge in cardiovascular medicine is to find a way of predicting the risk of hypertension complications by genetic markers that, used with imaging techniques, could lead to the development of new and better diagnostic and therapeutic methods.
Arterial Hypertension 2011, vol. 15, no 2, pages 125–142.

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Kannel WB. Risk stratification in hypertension: new insights from the Framingham Study. Am J Hypertens. 2000; 13(1 Pt 2): 3S–310S.
  2. Kannel WB. Fifty years of Framingham Study contributions to understanding hypertension. J Hum Hypertens. 2000; 14(2): 83–90.
  3. Kunes J, Zicha J. The interaction of genetic and environmental factors in the etiology of hypertension. Physiol Res. 2009; 58(supl. 2): S33–S41.
  4. Kuznetsova T, Staessen JA, Brand E, et al. European Project on Genes in Hypertension Investigators. Sodium excretion as a modulator of genetic associations with cardiovascular phenotypes in the European Project on Genes in Hypertension. J Hypertens. 2006; 24(2): 235–242.
  5. Pasierski T, Grodzicki T. Podłoże genetyczne powikłań nadciśnienia tętniczego w układzie sercowo-naczyniowym. In: Ciechanowicz A, Januszewicz A, Januszewicz W, Ruyłło W. ed. Genetyka chorób układu krążenia. Medycyna Praktyczna, Kraków 2002: 207–210.
  6. Ciechanowicz A. Molekularne podłoże nadciśnienia tętniczego-przegląd genów kandydatów. Genetyka chorób układu krążenia. In: Ciechanowicz A, Januszewicz A, Januszewicz W, Rużyłło W. ed. Genetyka chorób układu krążenia. Medycyna Praktyczna, Kraków 2002: 191–198.
  7. Gryglewska B, Nęcki M, Grodzicki T. Mikrokrążenie a nadciśnienie tętnicze. Nadciśnienie Tętnicze. 2001; 5(4): 229–234.
  8. Lewartowski B. Budowa i funkcja naczyń w nadciśnieniu tętniczym. In: Januszewicz A, Januszewicz W, Szczepańska-Sadowska E, Sznajderman M. ed. Nadciśnienie tętnicze. Medycyna Praktyczna, Kraków 2007: 159–170.
  9. Wnuczko K, Szczepański M. Śródbłonek — charakterystyka i funkcje. Pol Merk Lek. 2007; 23(133): 60–65.
  10. Sung KiC, Suh JY, Kim BS, et al. High sensitivity C-reactive protein as an independent risk factor for essential hypertension. Am J Hypertens. 2003; 16(6): 429–433.
  11. Boos CJ, Lip GYH. Is hypertension an inflammatory process? Curr Pharm Des. 2006; 12(13): 1623–1635.
  12. Kuklinska AM, Mroczko B, Musial WJ, et al. High-sensitivity C-reactive protein and total antioxidant status in patients with essential arterial hypertension and dyslipidemia. Adv Med Sci. 2009; 54(2): 225–232.
  13. Ridker PM, Morrow DA. C-reactive protein, inflammation, and coronary risk. Cardiol Clin. 2003; 21(3): 315–325.
  14. Li JJ, Fang CH. C-reactive protein is not only an inflammatory marker but also a direct cause of cardiovascular diseases. Med Hypotheses. 2004; 62(4): 499–506.
  15. Zhu XY, Daghini E, Chade AR, et al. Role of oxidative stress in remodeling of the myocardial microcirculation in hypertension. Arterioscler Thromb Vasc Biol. 2006; 26(8): 1746–1752.
  16. Félétou M, Köhler R, Vanhoutte PM. Endothelium-derived vasoactive factors and hypertension: possible roles in pathogenesis and as treatment targets. Curr Hypertens Rep. 2010; 12(4): 267–275.
  17. Luscher TF. The endothelium in hypertension: bystander, target or mediator? J Hypertens. 1994; 12(10): S105–S116.
  18. Martynowicz H, Skoczyńska A, Silber M, et al. Rola stresu oksydacyjnego w patogenezie nadciśnienia tętniczego. Nadciśnienie Tętnicze. 2004; 8(6): 431–438.
  19. Xu S, Touyz RM. Reactive oxygen species and vascular remodelling in hypertension: still alive. Can J Cardiol. 2006; 22(11): 947–951.
  20. Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol. 2004; 122(4): 339–352.
  21. Touyz R. Oxidative stress and vascular damage in hypertension. Current Hypertension Reports. 2000; 2(1): 98–105.
  22. Chłopicki S. Śródbłonek w patogenezie i farmakoterapii powikłań miażdżycowych nadciśnienia tętniczego. In: Januszewicz A, Januszewicz W, Szczepańska-Sadowska E, Sznajderman M. ed. Nadciśnienie tętnicze. Medycyna Praktyczna, Kraków 2007: 263–274.
  23. Filipiak KJ, Opolski G. Genetyczne uwarunkowania czynności śródbłonka. Genetyka chorób układu krążenia. In: Ciechanowicz A, Januszewicz A, Januszewicz W, Rużyłło W. ed. Genetyka chorób układu krążenia. Medycyna Praktyczna, Kraków 2002: 55–62.
  24. Lechi C, Gaino S, Zuliani V, et al. Elevated plasma fibrinogen levels in patients with essential hypertension are related to vascular complications. Int Angiol. 2003; 22(1): 72–78.
  25. Diamantopoulos E, Andreadis E, Vassilopoulos C, et al. Increased Plasma Plasminogen Activator Inhibitor‐1 Levels: A Possible Marker of Hypertensive Target Organ Damage. Clinical and Experimental Hypertension. 2003; 25(1): 1–9.
  26. Bujak R, Sinkiewicz W, Błażejewski J, et al. Tkankowy aktywator plazminogenu (t - PA) i jego inhibitor typu 1 (PAI - 1) u chorych z ostrym zawałem serca. Folia Cardiol. 2002; 4: 311–318.
  27. Grubic N, Stegnar M, Peternel P, et al. A novel G/A and the 4G/5G polymorphism within the promoter of the plasminogen activator inhibitor-1 gene in patients with deep vein thrombosis. Thromb Res. 1996; 84(6): 431–443.
  28. Kucukarabaci B, Gunes HV, Ozdemir G, et al. Investigation of association between plasminogen activator inhibitor type-1 (PAI-1) gene 4G/5G polymorphism frequency and plasma PAI-1 enzyme activity in patients with acute stroke. Genet Test. 2008; 12(3): 443–451.
  29. Mlynarska A, Waszyrowski T, Kasprzak JD. Increase in plasma plasminogen activators inhibitor type 1 concentration after fibrinolytic treatment in patients with acute myocardial infarction is associated with 4G/5G polymorphism of PAI-1 gene. J Thromb Haemost. 2006; 4(6): 1361–1366.
  30. Anvari A, Schuster E, Gottsauner-Wolf M, et al. PAI-I 4G/5G polymorphism and sudden cardiac death in patients with coronary artery disease. Thromb Res. 2001; 103(2): 103–107.
  31. Jastrzębska M, Widecka K, Ciechanowicz A, et al. imorfizmy 4G/5G genu inhibitora aktywatora plazminogenu (PAI - 1) oraz I/D genu enzymu konwertującego angiotensynę I (ACE) a aktywność fibrynolityczna u chorych z samoistnym nadciśnieniem tętniczym i dyslipidemią. Pol Arch Med Wewn. 2005; 113(1): 7–20.
  32. Asselbergs FW, Williams SM, Hebert PR, et al. Epistatic effects of polymorphisms in genes from the renin-angiotensin, bradykinin, and fibrinolytic systems on plasma t-PA and PAI-1 levels. Genomics. 2007; 89(3): 362–369.
  33. Zhao R, Ma X, Shen GX. Transcriptional regulation of plasminogen activator inhibitor-1 in vascular endothelial cells induced by oxidized very low density lipoproteins. Mol Cell Biochem. 2008; 317(1-2): 197–204.
  34. Makris TK, Stavroulakis GA, Dafni UG, et al. ACE/DD genotype is associated with hemostasis balance disturbances reflecting hypercoagulability and endothelial dysfunction in patients with untreated hypertension. Am Heart J. 2000; 140(5): 760–765.
  35. VISCHER UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. Journal of Thrombosis and Haemostasis. 2006; 4(6): 1186–1193.
  36. van Schie MC, van Loon JE, de Maat MPM, et al. Genetic determinants of von Willebrand factor levels and activity in relation to the risk of cardiovascular disease: a review. J Thromb Haemost. 2011; 9(5): 899–908.
  37. Nakamura S, Nakamura I, Ma L, et al. Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int. 2000; 58(1): 251–259.
  38. Sekuri C, Cam FS, Ercan E, et al. Renin-angiotensin system gene polymorphisms and premature coronary heart disease. J Renin Angiotensin Aldosterone Syst. 2005; 6(1): 38–42.
  39. Steeds RP, Wardle A, Smith PD, et al. Analysis of the postulated interaction between the angiotensin II sub-type 1 receptor gene A1166C polymorphism and the insertion/deletion polymorphism of the angiotensin converting enzyme gene on risk of myocardial infarction. Atherosclerosis. 2001; 154(1): 123–128.
  40. Mansego ML, Solar GD, Alonso MP, et al. Polymorphisms of antioxidant enzymes, blood pressure and risk of hypertension. J Hypertens. 2011; 29(3): 492–500.
  41. Heltianu C, Costache G, Gafencu A, et al. Relationship of eNOS gene variants to diseases that have in common an endothelial cell dysfunction. J Cell Mol Med. 2005; 9(1): 135–142.
  42. Zintzaras E, Kitsios G, Stefanidis I. Endothelial NO synthase gene polymorphisms and hypertension: a meta-analysis. Hypertension. 2006; 48(4): 700–710.
  43. Fairchild TA, Fulton D, Fontana JT, et al. Acidic hydrolysis as a mechanism for the cleavage of the Glu(298)-->Asp variant of human endothelial nitric-oxide synthase. J Biol Chem. 2001; 276(28): 26674–26679.
  44. Salimi S, Firoozrai M, Zand H, et al. Endothelial nitric oxide synthase gene Glu298Asp polymorphism in patients with coronary artery disease. Ann Saudi Med. 2010; 30(1): 33–37.
  45. Nakayama M, Yasue H, Yoshimura M, et al. T-786->C Mutation in the 5'-Flanking Region of the Endothelial Nitric Oxide Synthase Gene Is Associated With Coronary Spasm. Circulation. 1999; 99(22): 2864–2870.
  46. Jemaa R, Kallel A, Sediri Y, et al. Association between -786TC polymorphism in the endothelial nitric oxide synthase gene and hypertension in the Tunisian population. Exp Mol Pathol. 2011; 90(2): 210–214.
  47. Negrao MV, Alves CR, Alves GB, et al. Exercise training improves muscle vasodilatation in individuals with T786C polymorphism of endothelial nitric oxide synthase gene. Physiol Genomics. 2010; 42A(1): 71–77.
  48. Fatini C, Sofi F, Gensini F, et al. Influence of eNOS gene polymorphisms on carotid atherosclerosis. Eur J Vasc Endovasc Surg. 2004; 27(5): 540–544.
  49. Tsukada T, Yokoyama K, Arai T, et al. Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans. Biochem Biophys Res Commun. 1998; 245(1): 190–193.
  50. Mehrab-Mohseni M, Tabatabaei-Malazy O, Hasani-Ranjbar S, et al. Endothelial nitric oxide synthase VNTR (intron 4 a/b) polymorphism association with type 2 diabetes and its chronic complications. Diabetes Res Clin Pract. 2011; 91(3): 348–352.
  51. Banecka - Ma, Gąsecki D, Jakóbkiewicz - Ba, et al. Hiperhomocysteinemia — ważny czynnik ryzyka udaru mózgu. Udar Mózgu. 2005; 7(2): 61–65.
  52. Kraczkowska S, Suchocka Z, Pachecka J. Podwyższone stężenie homocysteiny we krwi jako wskaźnik zagrożenia zdrowia. Biul Wydz Farm WUM. 2005; 3: 19–24.
  53. Palko-Labuz A, Sadkierska-Chudy A, Pilecki W. The genetic background of thrombosis — the distribution of factor V leiden, prothrombin G20210A and MTHFR C677T polymorphism. Adv Clin Exp Med. 2010; 19(1): 51–55.
  54. Laurent S, Cockcroft J, Van Bortel L, et al. European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006; 27(21): 2588–2605.
  55. Kass DA. Age-related changes in venticular-arterial coupling: pathophysiologic implications. Heart Fail Rev. 2002; 7(1): 51–62.
  56. Tomiyama H, Arai T, Koji Y, et al. The age-related increase in arterial stiffness is augmented in phases according to the severity of hypertension. Hypertens Res. 2004; 27(7): 465–470.
  57. Pędzich E, Szmigielski C, Gaciong Z. Ciśnienie centralne jako wskaźnik ryzyka powikłań sercowo - naczyniowych. Naciśnienie Tętnicze. 2006; 10(5): 341–349.
  58. Jankowski P, Kawecka-Jaszcz K. Central blood pressure and cardiovascular risk. J Hypertens. 2009; 27(8): 1713.
  59. Rajzer M. Kawecka - Jaszcz K. Podatność tętnic w nadciśnieniu tętniczym. Od patofizjologii do znaczenia klinicznego. Nadciśnienie Tętnicze. 2002; 6(1): 61–73.
  60. Cwynar M, Wojciechowska W. Kawecka - Jaszcz K., Grodzicki T. Mechanizmy przebudowy dużych naczyń tętniczych. Przegląd Lekarski. 2002; 59(supl. 3): 1–8.
  61. Laurent S, Boutouyrie P, Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension. 2005; 45(6): 1050–1055.
  62. Kubalski P, Manitius J. Sztywność tętnic, ciśnienie centralne, współczynnik wzmocnienia — kompendium nie tylko dla hipertensjologa. Choroby Serca i Naczyń. 2008; 5(2): 61–67.
  63. Laurent S. Nadciśnienie tętnicze i choroba dużych naczyń. Choroby Serca i Naczyń. 2007; 4(3): 113–116.
  64. Trzebski A. Odruchowa regulacja krążenia krwi w nadciśnieniu tętniczym. In: Januszewicz A, Januszewicz W, Szczepańska-Sadowska E, Sznajderman M. ed. Nadciśnienie tętnicze. Medycyna Praktyczna, Kraków 2007: 171–198.
  65. Vastagh I, Horváth T, Nagy G, et al. Evolution and predictors of morphological and functional arterial changes in the course of type 1 diabetes mellitus. Diabetes Metab Res Rev. 2010; 26(8): 646–655.
  66. Scallan C, Doonan RJ, Daskalopoulou SS. The combined effect of hypertension and smoking on arterial stiffness. Clin Exp Hypertens. 2010; 32(6): 319–328.
  67. Doonan RJ, Hausvater A, Scallan C, et al. The effect of smoking on arterial stiffness. Hypertens Res. 2010; 33(5): 398–410.
  68. Wilkinson I, Cockcroft JR. Cholesterol, lipids and arterial stiffness. Adv Cardiol. 2007; 44: 261–277.
  69. Kingwell B, Boutouyrie P. Genetic influences on the arterial wall. Clin Exp Pharmacol Physiol. 2007; 34(7): 652–657.
  70. Szczepańska-Sadowska E, Cudnoch-Jędrzejewska A. Układ renina-angiotensyna-aldosteron — główny układ hormonalny w rozwoju nadciśnienia tętniczego. In: Szczepańska-Sadowska E, Januszewicz A, Januszewicz W, Sznajderman M. ed. Nadciśnienie Tętnicze. Medycyna Praktyczna, Kraków 2007: 199–222.
  71. Bozec E, Lacolley P, Bergaya S, et al. Arterial stiffness and angiotensinogen gene in hypertensive patients and mutant mice. J Hypertens. 2004; 22(7): 1299–1307.
  72. Baker M, Rahman T, Hall D, et al. The C-532T polymorphism of the angiotensinogen gene is associated with pulse pressure: a possible explanation for heterogeneity in genetic association studies of AGT and hypertension. Int J Epidemiol. 2007; 36(6): 1356–1362.
  73. Benetos A, Gautier S, Ricard S, et al. Influence of angiotensin-converting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients. Circulation. 1996; 94(4): 698–703.
  74. Rehman A, Rasool AH. G., Naing L., Roshan T.M., Rahman A.R.A. Influence of the angiotensin II type I receptor gene 1166A>C polymorhism on BP and aortic pulse wave velocity among Malays. Ann Hum Genet. 2007; 71(1): 860–895.
  75. Lajemi M, Labat C, Gautier S, et al. Angiotensin II type 1 receptor-153A/G and 1166A/C gene polymorphisms and increase in aortic stiffness with age in hypertensive subjects. J Hypertens. 2001; 19(3): 407–413.
  76. Nürnberger J, Opazo Saez A, Mitchell A, et al. The T-allele of the C825T polymorphism is associated with higher arterial stiffness in young healthy males. J Hum Hypertens. 2004; 18(4): 267–271.
  77. Olszanecka A, et al. Kawecka - Jaszcz K., Stolarz K. Polimorfizm podjednostki b3 białka G a ciśnienie tętnicze i struktura i funkcja naczyń krwionośnych. Nadciśnienie Tętnicze. 2004; 8(2): 119–131.
  78. Benetos A, Gautier S, Ricard S, et al. Influence of angiotensin-converting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients. Circulation. 1996; 94(4): 698–703.
  79. Dima I, Vlachopoulos C, Alexopoulos N, et al. Association of arterial stiffness with the angiotensin-converting enzyme gene polymorphism in healthy individuals. Am J Hypertens. 2008; 21(12): 1354–1358.
  80. Cwynar M, Wojciechowska W, Stolarz K. Wpływ interakcji polimorfizmów G - 6A genu AGT, D/I genu ACE oraz A1166C genu AGTR1 na ciśnienie tętnicze oraz na parametry usztywnienia tętnic. Nadciśnienie Tętnicze. 2007; 11(2): 95–105.
  81. Taniwaki H, Kawagishi T, Emoto M, et al. Association of ACE gene polymorphism with arterial stiffness in patients with type 2 diabetes. Diabetes Care. 1999; 22(11): 1858–1864.
  82. Mattace-Raso FUS, van der Cammen TJM, Sayed-Tabatabaei FA, et al. Angiotensin-converting enzyme gene polymorphism and common carotid stiffness. The Rotterdam study. Atherosclerosis. 2004; 174(1): 121–126.
  83. Sie MPS, Yazdanpanah M, Mattace-Raso FUS, et al. Genetic variation in the renin-angiotensin system and arterial stiffness. The Rotterdam Study. Clin Exp Hypertens. 2009; 31(5): 389–399.
  84. Zhang H, Thijs L, Kuznetsova T, et al. Progression to hypertension in the non-hypertensive participants in the Flemish Study on Environment, Genes and Health Outcomes. J Hypertens. 2006; 24(9): 1719–1727.
  85. Seidlerová J. Adducin and its relation to cardiovascular system. Artery Research. 2010; 4(4): 134–137.
  86. Balkestein EJ, Wang JiG, Struijker-Boudier HAJ, et al. Carotid and femoral intima-media thickness in relation to three candidate genes in a Caucasian population. J Hypertens. 2002; 20(8): 1551–1561.
  87. Pojoga L, Gautier S, Blanc H, et al. Genetic determination of plasma aldosterone levels in essential hypertension. Am J Hypertens. 1998; 11(7): 856–860.
  88. Wojciechowska W, Staessen JA, Stolarz K, et al. European Project on Genes in Hypertension (EPOGH) Investigators. Association of peripheral and central arterial wave reflections with the CYP11B2 -344C allele and sodium excretion. J Hypertens. 2004; 22(12): 2311–2319.
  89. Safar ME, Cattan V, Lacolley P, et al. Aldosterone synthase gene polymorphism, stroke volume and age-related changes in aortic pulse wave velocity in subjects with hypertension. J Hypertens. 2005; 23(6): 1159–1166.
  90. Blacher J, Kakou A, Lacombe JM, et al. Preferential association of aldosterone synthase gene polymorphism with central blood pressure and wave reflections in hypertensive individuals. J Hum Hypertens. 2010; 24(4): 291–299.
  91. Wojciechowska W, Cwynar M, et al. Stolarz - Skrzypek K. Związek polimorfizmu genów syntazy aldosteronu i a adducyny ze zmiennością ciśnienia tętniczego (SBPM). Nadciśnienie Tętnicze. 2007; 11(2): 53–59.
  92. Lipka D, Boratyński J. Metaloproteinazy MMP. Struktura i ich funkcja. Postępy Hig Med Dośw. 2008; 62: 328–336.
  93. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001; 17: 4663–4516.
  94. Santos-Martínez MJ, Medina C, Jurasz P, et al. Role of metalloproteinases in platelet function. Thromb Res. 2008; 121(4): 535–542.
  95. Mulvany MJ, Baumbach GL, Aalkjaer C. Vascular remodeling. Hypertension. 1996; 28: 505–506.
  96. De Mey JoGR, Schiffers PM, Hilgers RHP, et al. Toward functional genomics of flow-induced outward remodeling of resistance arteries. Am J Physiol Heart Circ Physiol. 2005; 288(3): H1022–H1027.
  97. Lee HY, Oh BH. Aging and arterial stiffness. Circ J. 2010; 74(11): 2257–2262.
  98. Briones AM, Arribas SM, Salaices M. Role of extracellular matrix in vascular remodeling of hypertension. Curr Opin Nephrol Hypertens. 2010; 19(2): 187–194.
  99. Powell JT, Turner RJ, Sian M, et al. Influence of fibrillin-1 genotype on the aortic stiffness in men. J Appl Physiol (1985). 2005; 99(3): 1036–1040.
  100. Medley TL, Cole TJ, Gatzka CD, et al. Fibrillin-1 genotype is associated with aortic stiffness and disease severity in patients with coronary artery disease. Circulation. 2002; 105(7): 810–815.
  101. Yasmin, O’Shaughnessy K.M., McEniery C.M., Cockcroft .R., Wilkinson I.B. Genetic variation in fibrilin - 1 gene is not associated with arterial stiffness in apparently healthy inviduals. J Hypertens. 2006; 24: 499–502.
  102. Zhu C, Odeberg J, Hamsten A, et al. Allele-specific MMP-3 transcription under in vivo conditions. Biochem Biophys Res Commun. 2006; 348(3): 1150–1156.
  103. Bini A, Itoh Y, Kudryk BJ, et al. Degradation of cross-linked fibrin by matrix metalloproteinase 3 (stromelysin 1): hydrolysis of the gamma Gly 404-Ala 405 peptide bond. Biochemistry. 1996; 35(40): 13056–13063.
  104. Medley TL, Kingwell BA, Gatzka CD, et al. Matrix metalloproteinase-3 genotype contributes to age-related aortic stiffening through modulation of gene and protein expression. Circ Res. 2003; 92(11): 1254–1261.
  105. Beilby JP, Chapman CML, Palmer LJ, et al. Stromelysin-1 (MMP-3) gene 5A/6A promoter polymorphism is associated with blood pressure in a community population. J Hypertens. 2005; 23(3): 537–542.
  106. Galis ZS, Johnson C, Godin D, et al. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res. 2002; 91(9): 852–859.
  107. McEniery CM, Wallace S, Dakham Z, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol. 2005; 25(2): 372–373.
  108. Zhang B, Ye S, Herrmann SM, et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation. 1999; 99(14): 1788–1794.
  109. Medley TL, Cole TJ, Dart AM, et al. Matrix metalloproteinase-9 genotype influences large artery stiffness through effects on aortic gene and protein expression. Arterioscler Thromb Vasc Biol. 2004; 24(8): 1479–1484.
  110. Blankenberg S, Rupprecht HJ, Poirier O, et al. AtheroGene Investigators. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003; 107(12): 1579–1585.
  111. McEniery CM, O'Shaughnessy KM, Harnett P, et al. Variation in the human matrix metalloproteinase-9 gene is associated with arterial stiffness in healthy individuals. Arterioscler Thromb Vasc Biol. 2006; 26(8): 1799–1805.
  112. 2007 guidelines for the management of arterial hypertension. Eur. Heart J. 2007; 28: 1462–1536.
  113. Paternoster L, Martinez-Gonzales NA, Charleton R, et al. Geneticic effects on carotid intima - media thickness (Systematic assessment and meta - analyses of candidate gene polymorphism studies in more than 5000 subjects). Circ Cardiovasc Genet. 2010; 3(1): 15–21.
  114. Jofre-Monseny L, Minihane AM, Rimbach G. Impact of apoE genotype on oxidative stress, inflammation and disease risk. Mol Nutr Food Res. 2008; 52(1): 131–145.
  115. Nyholt DR, Yu CE, Visscher PM. On Jim Watson's APOE status: genetic information is hard to hide. Eur J Hum Genet. 2009; 17(2): 147–149.
  116. Manolio TA, Boerwinkle E, O'Donnell CJ, et al. Genetics of ultrasonographic carotid atherosclerosis. Arterioscler Thromb Vasc Biol. 2004; 24(9): 1567–1577.
  117. Alioglu E, Turk U, Cam S, et al. Polymorphisms of the methylenetetrahydrofolate reductase, vascular endothelial growth factor, endothelial nitric oxide synthase, monocyte chemoattractant protein-1 and apolipoprotein E genes are not associated with carotid intima-media thickness. Can J Cardiol. 2009; 25(1): e1–e5.
  118. Liao YC, Lin HF, Rundek T, et al. Segment-specific genetic effects on carotid intima-media thickness: the Northern Manhattan study. Stroke. 2008; 39(12): 3159–3165.
  119. Bonithon-Kopp C, Ducimetière P, Touboul PJ, et al. Plasma angiotensin-converting enzyme activity and carotid wall thickening. Circulation. 1994; 89(3): 952–954.
  120. Castellano M, Muiesan ML, Rizzoni D, et al. Angiotensin-converting enzyme I/D polymorphism and arterial wall thickness in a general population. The Vobarno Study. Circulation. 1995; 91(11): 2721–2724.
  121. Rundek T, Elkind MS, Pittman J, et al. Carotid intima-media thickness is associated with allelic variants of stromelysin-1, interleukin-6, and hepatic lipase genes: the Northern Manhattan Prospective Cohort Study. Stroke. 2002; 33(5): 1420–1423.
  122. Armstrong C, Abilleira S, Sitzer M, et al. Polymorphisms in MMP family and TIMP genes and carotid artery intima-media thickness. Stroke. 2007; 38(11): 2895–2899.
  123. Ghilardi G, Biondi ML, DeMonti M, et al. Matrix metalloproteinase-1 and matrix metalloproteinase-3 gene promoter polymorphisms are associated with carotid artery stenosis. Stroke. 2002; 33(10): 2408–2412.
  124. Futrakul N, Sridama V, Futrakul P. Microalbuminuria--a biomarker of renal microvascular disease. Ren Fail. 2009; 31(2): 140–143.
  125. Lewandowicz A. Mikroalbuminuria — wciąż fascynujące zagadnienie. Kardiologia na co Dzień. 2009; 4(1): 3–8.
  126. Wachtell K. Albuminuria and Cardiovascular Risk in Hypertensive Patients with Left Ventricular Hypertrophy: The LIFE Study. Annals of Internal Medicine. 2003; 139(11): 901–906.
  127. Redon J, Martinez F, Pascual JM. Mikroalbuminuria w samoistnym nadciśnieniu tętniczym. Choroby Serca i Naczyń. 2008; 5(3): 121–124.
  128. Redon J, Pascual JM. Development of microalbuminuria in essential hypertension. Curr Hypertens Rep. 2006; 8(2): 171–177.
  129. Martinez F, Mansego ML, Chaves FJ, et al. Genetic bases of urinary albumin excretion and related traits in hypertension. J Hypertens. 2010; 28(2): 213–225.
  130. Rovira E, Chaves FJ, Julve R, et al. [Insertion/deletion polymorphism of the gene encoding for angiotensin-converting enzyme and microalbuminuria in essential arterial hypertension]. Med Clin (Barc). 1999; 112(19): 726–730.
  131. Redon J, Chaves FJ, Liao Y, et al. Influence of the I/D polymorphism of the angiotensin-converting enzyme gene on the outcome of microalbuminuria in essential hypertension. Hypertension. 2000; 35(1 Pt 2): 490–495.
  132. Pedrinelli R, Dell'Omo G, Penno G, et al. Alpha-adducin and angiotensin-converting enzyme polymorphisms in hypertension: evidence for a joint influence on albuminuria. J Hypertens. 2006; 24(5): 931–937.
  133. Chaves FJ, Pascual JM, Rovira E, et al. Angiotensin II AT1 receptor gene polymorphism and microalbuminuria in essential hypertension. Am J Hypertens. 2001; 14(4 Pt 1): 364–370.
  134. Buraczynska M. Genetic polymorphisms of the renin-angiotensin system in end-stage renal disease. Nephrology Dialysis Transplantation. 2005; 21(4): 979–983.
  135. Ishigami T, Umemura S, Tamura K, et al. Essential hypertension and 5' upstream core promoter region of human angiotensinogen gene. Hypertension. 1997; 30(6): 1325–1330.
  136. Marin P, Julve R, Chaves FJ, et al. Polymorphisms of the angiotensinogen gene and the outcome of microalbuminuria in essential hypertension: a 3-year follow-up study. J Hum Hypertens. 2004; 18(1): 25–31.
  137. Pereira AC, Floriano MS, Mota GFA, et al. Beta2 adrenoceptor functional gene variants, obesity, and blood pressure level interactions in the general population. Hypertension. 2003; 42(4): 685–692.
  138. Masuo K, Katsuya T, Sugimoto K, et al. High plasma norepinephrine levels associated with beta2-adrenoceptor polymorphisms predict future renal damage in nonobese normotensive individuals. Hypertens Res. 2007; 30(6): 503–511.
  139. Kobayashi Y, Nakayama T, Sato N, et al. Haplotype-based case-control study revealing an association between the adrenomedullin gene and proteinuria in subjects with essential hypertension. Hypertens Res. 2005; 28(3): 229–236.
  140. Baltyn J, Soldacki D, Zygier M, et al. Adrenomedulina — spojrzenie z perspektywy 10 lat od jej odkrycia. Kardiologia po Dyplomie. 2003; 2(5): 111.
  141. Ishimitsu T, Ono H, Minami J, et al. Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther. 2006; 111(3): 909–927.
  142. Collins FS, Morgan M, Patrinos A. The Human Genome Project: lessons from large-scale biology. Science. 2003; 300(5617): 286–290.
  143. Luco RF, Allo M, Schor IE, et al. Epigenetics in alternative pre-mRNA splicing. Cell. 2011; 144(1): 16–26.
  144. Hui J. Regulation of mammalian pre-mRNA splicing. Sci China C Life Sci. 2009; 52(3): 253–260.